摘要:
A membrane for the separation of an organic solvent from a water-organic solvent mixture has a polymeric membrane of a copolymer consisting essentially of an .alpha., .beta.-unsaturated carbonyl compound as a main monomer. The .alpha., .beta.-unsaturated carbonyl compound includes an acrylic acid ester or a methacrylic acid ester. The polymeric membrane has a crosslinked structure. The polymeric membrane is carried on a support member in the form of a flat membrane, a pipe or a hollow fiber. The polymeric member includes particles therein. The polymeric membrane is sandwiched by the support members to form a composite-type separation membrane. The composite-type separation membrane is modulated.
摘要:
A surface-hydrophilic, highly selective semipermeable membrane comprising a semipermeable membrane of a hydrophobic polymer and a hydrophilic segment having at least one end directly bonded to at least one surface of the semipermeable membrane is disclosed. The hydrophilic segment comprises at least one methylene group or substituted methylene group which is positioned at least at one end of the segment and at least one neutral hydroxyl group. The surface-hydrophilic, highly selective semipermeable membrane not only has excellent resistance to heat and organic solvents, but also non-adsorptivity for organic substances including even ionic organic substances. Therefore, the surface-hydrophilic, highly selective semipermeable membrane of the present invention can advantageously be used for microfiltration, ultrafiltration, reverse osmosis and dialysis.
摘要:
The present invention discloses a method for forming a low biofouling filtration membrane. First, an ozone treatment is performed to a fluorine-based porous membrane to introduce peroxides on surface. Afterwards, a first grafting polymerization is initiated from the peroxides, and functional monomers are polymerized to introduce halide groups on surface. Finally, a second grafting polymerization is initiated from the halide groups, and macro-monomers are polymerized to introduce zwitterionic group on surface, so as to form the low biofouling filtration membrane.
摘要:
Disclosed herein are methods and systems for isolating, ex vivo expanding and harvesting hematopoietic stem cells. Methods and systems described herein are easy to use, time-efficient, and allow isolation, ex vivo expansion and harvest of hematopoietic stem cells either batchly or continuously.
摘要:
This invention is to provide a catalyst (an artificial enzyme) which can be used as an alternative to a protein enzyme in the field relating to medicine, pharmaceuticals, biochemistry or chemical engineering. Such a catalyst comprises a complex of a transition metal and a monomeric or polymeric nucleotide or an analogue thereof.
摘要:
The present invention discloses a method for forming a low biofouling filtration membrane. First, an ozone treatment is performed to a fluorine-based porous membrane to introduce peroxides on surface. Afterwards, a first grafting polymerization is initiated from the peroxides, and functional monomers are polymerized to introduce halide groups on surface. Finally, a second grafting polymerization is initiated from the halide groups, and macro-monomers are polymerized to introduce zwitterionic group on surface, so as to form the low biofouling filtration membrane.