Abstract:
An electro-hydrodynamic system that extracts energy from a gas stream, which includes an injector that injects a first species of particles having the same polarity into the gas stream, wherein particle movement with the gas stream is opposed by a first electric field; an electric field generator that generates a second electric field opposing the first, such that the net electric field at a predetermined distance downstream from the injector is approximately zero; an upstream collector that collects a second species of particles having a polarity opposite the first particle species; a downstream collector that collects the charged particle; and a load coupled between the downstream collector and the upstream collector, wherein the load converts the kinetic energy of the gas stream into electric power.
Abstract:
A system for electro-hydrodynamically extracting energy from wind includes an upstream collector that is biased at an electric potential and induces an electric field. An injector introduces a particle into the electric field. The wind drag on the particle is at least partially opposed by a force of the electric field on the particle. A sensor monitors an ambient atmospheric condition, and a controller changes a parameter of the injector in response to a change in the atmospheric condition.
Abstract:
A system for electro-hydrodynamically extracting energy from wind includes an upstream collector that is biased at an electric potential and induces an electric field. An injector introduces a particle into the electric field. The wind drag on the particle is at least partially opposed by a force of the electric field on the particle. A sensor monitors an ambient atmospheric condition, and a controller changes a parameter of the injector in response to a change in the atmospheric condition.
Abstract:
A system, method, and articles are disclosed with respect to depositing aluminum or alloys thereof, utilizing ultrasonic object consolidation. The method aspect of the invention comprises the steps of heat-treating an aluminum-based feedstock and ultrasonically consolidating the feedstock to a substrate to produce a part or a repair of a part, as might be required in an aerospace or aircraft structure. The feedstock may be solution heat-treated. This would include situations wherein the feedstock is solution heat treated off-line and maintained under controlled temperature conditions to prevent precipitation of solutes prior to the ultrasonic consolidation. Alternatively, the feedstock may be heat-treated on-line by passing it through a temperature- and/or atmosphere-controlled chamber prior to ultrasonic consolidation. The feedstock may be supported to minimize slumping due to creep. The feedstock may be T4, or may be aged, to T6, for example. The feedstock may be allowed to age naturally at room temperature, or a heat source may be used to artificially age the consolidated feedstock. The substrate may be aged or unaged. The source of the aluminum-based feedstock is in the form of tapes, sheets, wires, or droplets.
Abstract:
A system and a method of fabricating a three-dimensional object consolidates material increments in accordance with a description of the object using a process that produces an atomically clean faying surface between the increments without melting the material in bulk. The CAD system (60) interfaces with a numerical controller (70), which controls an actuation system. The actuation system brings the support feed unit (62) the support ultrasonic welding unit (66), the object feed unit (64) and the object ultrasonic welding unit (68) into proper position in the work area (75), so that the ultrasonic consolidation of the layers takes place according to the CAD description of the object. In alternative embodiments, electrical resistance, and frictional methodologies are used for object consolidation. The invention further facilitates the construction and repair of dense objects, including fiber-reinforced composites and aerospace structures.
Abstract:
Friction heating and bonding are used to consolidate sequentially applied metals, plastics or composites to previously deposited material so as to form a bulk deposit in a desired shape. Monolithic or composite sheets, tapes and filaments can be consolidated using the approach. A system according to the invention includes a source of friction; a mechanism for applying a forging load between a feedstock power supply and a work surface; a work-head, which may have various configurations depending on the geometry of the feedstock to be used; a material feeding system; and a computer-controlled actuation system which controls the placement of material increments added to an object being built. A computer model of the object to be built is used to generate commands to produce the object additively and automatically. The approach provides a solid, freeform fabrication technique that requires no tooling, operates in the solid state, and creates a bond directly at the faying surfaces (i.e., acts only at the location where bonding/consolidation of the material increments is desired).
Abstract:
This invention improves upon existing approaches by providing a method for improving the uniformity of additive manufacturing processes of the type wherein material increments are consolidated to produce a three-dimensional object. According to one aspect of the invention, the method comprises the steps of tacking an increment during the method to minimize creep, then fully consolidating that increment to the underlying material. According to a different aspect of the invention, the method includes a step of steering the welding head or the feeding of the increments to ensure that the relative orientation of the contact line of the welding head as defined by the lowest surface is parallel to the central axis. As yet a further aspect of the invention, a different method includes a step of placing the increment so as to minimize the ratio of deformed to undeformed material. Such placement may be carried out manually over automatically.
Abstract:
Orthopaedic implants are formed using processes whereby a metal alloy is cooled at a rate rapid enough that an amorphous or partially amorphous structure is retained. In the preferred embodiment, the metal alloy is a calcium-based metal alloy. The fabrication process may include die-casting or additive manufacturing process of the type wherein material increments are consolidated in accordance with the description without melting the material in bulk. Such processes include ultrasonic consolidation, electrical resistance consolidation, and frictional consolidation. The material increments are provided in the form of sheets, elongated tapes, filaments, dots or droplets. A preferred method includes a casting process to produce an initial form having an outer surface followed by an additive manufacturing process used to build up at least a portion of the outer surface. For example, the portion may include an intramedullary stem, bone-ingrowth surface, or articulating surface.
Abstract:
Materials and methods inhibit the localized build-up of material with respect to certain additive manufacturing processes, including those based on ultrasonic consolidation. Where an object is fabricated by consolidating material increments from a feedstock in accordance with a description of the object, the invention prevents the consolidation in specified regions to provide for an intrinsic support or to otherwise build a part or component in accordance with the description. The object being fabricated, the feedstock, or both, may be treated so as to inhibit the consolidation of material increments in the localized area. That is, such treatment may affect the surface chemistry of the feedstock to prevent local bonding, or the treatment may be applied to a previously built surface of the object. The treatment may include the introduction of an oxidizer, such as a metal nitrate, chlorate, chromate, peroxide, or manganate; a base or alkali; or a coating of a lubricious material such as tin, Teflon, or petroleum distillates to prevent the breakup of an oxide layer.
Abstract:
Disclosed is method of enhancing bond quality in an ultrasonic consolidation process using a sonotrode having a power output level. The preferred embodiment includes the steps of inputting a plurality of process parameters associated with a localized geometry over which the ultrasonic consolidation is occurring, and varying the relationship between these parameters to control the power output level to optimize bond quality between layers of material as they are consolidated. The process parameters, alone or in combination, may include the speed of the consolidation; the amplitude of the ultrasonic energy; applied force; and/or temperature.