摘要:
The present invention faces the issue of data replication in different database nodes of a geographically distributed database wherein clients cannot always perform any database-related operation in the closest database node. Thus, the present invention provides for an enhanced distributed database system with a plurality of nodes, each node arranged for storing a replica of at least one partition of data, and a method of handling said distributed database system comprising the steps of: partitioning data to a number of partitions; replicating each partition into a number of replicas; for each partition, distributing the number of replicas amongst database nodes; activating more than one node; monitoring at each active node events of: latest updating of each replica, replica status, status of local resources in charge of each replica, and connectivity status of each replica; upon activation o deactivation of a node, determining which node is considered current master node for each partition in charge of current mast replica; for any request received in a node to read/write data, determining the current master node in charge of the current master replica, and routing said request to said current master node.
摘要:
The present invention relates to methods for prevention and treatment of bone-related disorders and calcium homeostasis related syndromes using a GLP-2 molecule or GLP-2 activator either alone or in combination with another therapeutic. The present invention also encompasses methods of diagnosing or monitoring the progression of a disorder. The invention also encompasses methods of monitoring the effectiveness of treatment of the invention.
摘要:
Disclosed are compositions and methods for performing an immuno-assay that includes measuring the amount of an isomerised or optically inverted non-collagen protein derived from cartilage.
摘要:
The method of the invention provides for the formation of a recombinant polypeptide which has been modified at the C-terminal end through the use of a transpeptidation process. The method is suitable for modifying recombinant polypeptides of any source including those which may be commercially available, those derived from recombinant single copy or multicopy polypeptide constructs, or those derived from single or multicopy recombinant fusion protein constructs. The transpeptidation reaction involves contacting an endopeptidase enzyme with a recombinant polypeptide to substitute an addition unit, of one or more amino acids, for a leaving unit, linked to a core polypeptide through a cleavage site recognized by the endopeptidase enzyme. Recombinant polypeptides derived from multicopy polypeptide constructs may be cleaved from the multicopy polypeptide at the N-terminal and C-terminal ends and simultaneously under go substitution of the leaving unit by the desired addition unit. The invention utilizes known and newly discovered cleavage recognition sites to effectuate the desired modification products.
摘要:
The method of the invention provides for the formation of a recombinant polypeptide which has been modified at the C-terminal end through the use of a transpeptidation process. The method is suitable for modifying recombinant polypeptides of any source including those which may be commercially available, those derived from recombinant single copy or multicopy polypeptide constructs, or those derived from single or multicopy recombinant fusion protein constructs. The transpeptidation reaction involves contacting an endopeptidase enzyme with a recombinant polypeptide to substitute an addition unit, of one or more amino acids, for a leaving unit, linked to a core polypeptide through a cleavage site recognized by the endopeptidase enzyme. Recombinant polypeptides derived from multicopy polypeptide constructs may be cleaved from the multicopy polypeptide at the N-terminal and C-terminal ends and simultaneously under go substitution of the leaving unit by the desired addition unit. The invention utilizes known and newly discovered cleavage recognition sites to effectuate the desired modification products.
摘要:
The present invention relates to methods for prevention and treatment of bone-related or nutrition-related disorders using a GLP-2 molecule or GLP-2 activator either alone or in combination with another therapeutic. The invention also encompasses methods of monitoring the effectiveness of treatment of the invention.
摘要:
A distributed database system with a plurality of nodes is provided, each node storing a replica of at least one partition of data. A method of handling the distributed database system comprises: partitioning data into a number of partitions; replicating each partition into a number of replicas; for each partition, distributing the number of replicas amongst database nodes; activating more than one node; monitoring at each active node events of: latest updating of each replica, replica status, status of local resources in charge of each replica, and connectivity status of each replica; upon activation or deactivation of a node, determining which node is considered current master node for each partition in charge of current master replica; for any request received in a node to read/write data, determining the current master node in charge of the current master replica, and routing said request to said current master node.
摘要:
A transmitting node in a telecommunications network, wherein data are distributed into one or more data storage groups (DSG), and wherein data related to a DSG is replicated into a plurality of data storage elements (DS) distributed along one or more nodes of the network. The transmitting node includes a network interface through which a bi-directional connection is established with a plurality of other nodes in a transport layer of the network, and from which messages are sent to the plurality of other nodes comprising an operational state matrix (OSM), which includes information held by the transmitting node about the operational state of the replicas of the DSs of each DSG. The transmitting node includes a memory for storing data. The transmitting node includes a processing unit which forms a list of the plurality of other nodes as having an answer pending of the node in the memory. The network interface receives an OSM from at least some of other nodes which are interpreted by the processing unit as answer messages from the list of the plurality of other nodes to the messages sent by the network interface, and which indicates that an OSM information exchange with the plurality of the other nodes is complete. The processing unit decides a node hosting the master DS replica of each DSG based on the OSM information exchange. The processing unit detects changes in a view of the world (VOW) which includes an accumulated set of OSMs with respect to each DSG hosted by the transmitting node. The network interface sends messages comprising changes in the VOW to the other nodes.
摘要:
The method of the invention provides for the formation of a recombinant polypeptide which has been modified at the C-terminal end through the use of a transpeptidation process. The method is suitable for modifying recombinant polypeptides of any source including those which may be commercially available, those derived from recombinant single copy or multicopy polypeptide constructs, or those derived from single or multicopy recombinant fusion protein constructs. The transpeptidation reaction involves contacting an endopeptidase enzyme with a recombinant polypeptide to substitute an addition unit, of one or more amino acids, for a leaving unit, linked to a core polypeptide through a cleavage site recognized by the endopeptidase enzyme. Recombinant polypeptides derived from multicopy polypeptide constructs may be cleaved from the multicopy polypeptide at the N-terminal and C-terminal ends and simultaneously under go substitution of the leaving unit by the desired addition unit. The invention utilizes known and newly discovered cleavage recognition sites to effectuate the desired modification products.
摘要:
A process for preparing C-terminally amidated peptides, Peptide-NH.sub.2, is presented. In a first step, a substrate component is reacted with a nucleophile component in the presence of trypsin or a carboxypeptidase using as nucleophile a compound NH.sub.2 -R to form a first reaction product Peptide-NH-R. In a second step, the first reaction product is non-enzymatically chemically cleaved to form the C-terminally amidated product, Peptide-NH.sub.2. The substrate component is selected from a) peptide derivatives Peptide-X-Y, where X is an amino acid or peptide residue and Y is OH, OMe or C-terminal modification and c) C-terminally esterified peptides, Peptide-OR', where R' is alkyl, aryl, heteroaryl, or aralkyl. The nucleophile component is selected from ##STR1## wherein A-F and A'-E' are carbon atoms or up to two hetero atoms, Y is H, alkyl, aryl, aralkyl, oxo or carboxy, X.sup.1 -X.sup.5 are H or various substituents. The cleavage may be induced by photolysis, solvolysis, reduction, rearrangement elimination, or oxidation. The process may be adapted to enzymatic synthesis and lends itself to C-terminal amidation of many types of peptides.