Abstract:
A method is provided for taking a digital picture of an image. The method can include: recording a first plurality of pixel values representing the image; generating a first compressed image data file based on the first plurality of pixel values; recording a second plurality of pixel values representing the image; generating a second compressed image data file based on the first plurality of pixel values; and processing the first and second plurality of pixel values in a compressed domain to generate a third plurality of pixel values, wherein processing includes combining the first and second compressed image data files by replacing portions of the second compressed image data file with corresponding portions of the first compressed image data file.
Abstract:
Disclosed are methods and devices for solid state electronically switched optical shutters of cameras and other devices. The disclosed non-mechanical camera shutter includes an electronically controlled material that provides optical density variation, to transition the shutter from being open to being closed. The layer of electronically controlled material is configured to change from substantially to transparent to substantially opaque, without scattering, by changing the state of the material. The transmittance period is the period of time that the layer changes transmittance from approximately 100% to approximately 0%. Electronic circuitry is in communication with a timing control module that is configured to provide a signal output to a transparent conductive layer proximal to the layer of electronically controlled material to initiate a change in its transmissivity. The described electronically switched optical component would add little or no additional bulk to a small camera.
Abstract:
A circuit for use in an image sensor as well as an image sensing system using the circuit are set forth. The circuit comprises a memory device having a non-volatile memory cell, a control gate, a drain and a source. The circuit also employs a photosensitive semiconductor device that is positioned for exposure to electromagnetic radiation from an image. A pixel control circuit is connected to these components to direct the memory device and the photosensitive semiconductor device to a plurality of controlled modes. The controlled modes may include an erase mode and an exposure mode. In the erase mode, at least a portion of an electric charge is removed from the non-volatile memory cell to place the memory device in an initialized state. In the exposure mode, the non-volatile memory cell is charged at least partially in response to a voltage at a terminal of the photosensitive semiconductor device. The voltage at the terminal of the photosensitive semiconductor device corresponds to exposure of the photosensitive semiconductor device to the electromagnetic radiation from the image. The pixel control circuit may also direct the memory device and the photosensitive semiconductor device to further modes including a read mode and a data retention mode. In the read mode, current flow between the source and drain of the memory device is detected as an indicator of the charge on the non-volatile memory cell. In the data retention mode, the charge on the non-volatile memory cell of the memory device that was acquired during the exposure mode is maintained notwithstanding further exposure of the photosensitive semiconductor device to the electromagnetic radiation from the image. The circuit, and one or more peripheral support circuits, may be implemented in a monolithic substrate using, for example, conventional CMOS manufacturing processes.
Abstract:
Disclosed are methods and devices for the irises of cameras. A non-mechanical or electro-optical camera iris includes a controlled material that is configured to change from substantially transparent to substantially opaque by changing the state of the controlled material to effectively adjust the size of the central window of the iris. Accordingly, the described electro-optical iris would add little or no additional bulk to a small mobile communication device camera. The controlled material can be electrically controlled or thermally controlled. The controlled material can be a set of separately controllable areas substantially surrounding the central window. The set can have an ordering from outer to inner so that outer separately controllable areas in the set substantially surround inner separately controllable areas in the set. Accordingly, by changing the opacity of the outer area from transparent to opaque, the size of the central window of the adjustable aperture is reduced.
Abstract:
A light sensing circuit (400) and image sensor array includes at least one light sensing element (402), such as a photodiode, and at least one ferroelectric element (404), such as a CMOS ferroelectric gate field effect transistor (FET), that is operatively coupled to the light sensing element to form a photo cell. The ferroelectric element provides charge storage as a non-volatile analog memory element. As such, a type of photo cell serves as a ferroelectric memory that can store the charge from the light sensing element and be programmed to provide electronic shutter operation.
Abstract:
A circuit for use in an image sensor as well as an image sensing system using the circuit are set forth. The circuit comprises a floating gate semiconductor device having a floating gate, a control gate, a drain and a source. The circuit also employs a photosensitive semiconductor device that is positioned for exposure to electromagnetic radiation from an image. A pixel control circuit is connected to these components to direct the floating gate semiconductor device and the photosensitive semiconductor device to a plurality of controlled modes. The controlled modes may include an erase mode and an exposure mode. In the erase mode, at least a portion of an electric charge is removed from the floating gate to place the floating gate semiconductor device in an initialized state. In the exposure mode, the floating gate is charged at least partially in response to a voltage at a terminal of the photosensitive semiconductor device. The voltage at the terminal of the photosensitive semiconductor device corresponds to exposure of the photosensitive semiconductor device to the electromagnetic radiation from the image. The pixel control circuit may also direct the floating gate semiconductor device and the photosensitive semiconductor device to further modes including a read mode and a data retention mode. In the read mode, current flow between the source and drain of the floating gate semiconductor device is detected as an indicator of the charge on the floating gate. In the data retention mode, the charge on the floating gate of the floating gate semiconductor device that was acquired during the exposure mode is maintained notwithstanding further exposure of the photosensitive semiconductor device to the electromagnetic radiation from the image. The circuit, and one or more peripheral support circuits, may be implemented in a monolithic substrate using, for example, conventional CMOS manufacturing processes.
Abstract:
A method of converting text to speech in a communication device includes providing a code table containing coded speech parameters. Next steps include inputting a text message into a communication device, and dividing the text message into phonics. A next step includes mapping each of the phonics against the code table to find the coded speech parameters corresponding to each of the phonics. A next step includes processing the coded speech parameters corresponding to each of the phonics to provide an audio signal. In this way, text can be mapped directly to a vocoder table without intermediate translation steps.
Abstract:
The present invention discloses a Zero-IF receiver in a Time division Duplex TDD system, a correction method therefor and a base station associated therewith. The Zero-IF receiver comprises a Radio Frequency RF circuit, a baseband circuit, and a correction circuit for correcting baseband signals from the baseband circuit based on correction parameters. Said Zero-IF receiver further comprises a training signal providing part for providing a training signal to train the correction circuit to adapt said correction parameters, and a training signal coupling part for coupling said training signal to the baseband circuit during an idle period of the Zero-IF receiver to enable the correction circuit to adapt said correction parameters based on said training signal. The present invention provides stable and reliable training signals that can be used to adapt correction parameters of a correction circuit to improve receiver performance.
Abstract:
A method and digital camera module is provided for taking a digital picture of an image. The digital camera module includes a plurality of light sensitive pixel elements, a first memory buffer, a second memory buffer and a controller. The controller is coupled to the plurality of light sensitive pixel elements and the first and second memory buffers and records a first plurality of pixel values representing an image by activating the plurality of light sensitive pixel elements in a first predetermined manner and stores the first plurality of pixel values in the first buffer. The controller then records a second plurality of pixel values representing the image by activating the plurality of light sensitive pixel elements in a second predetermined manner and stores the second plurality of pixel values in the second buffer. The controller further processes the first and second plurality of pixel values in a compressed domain to generate a third plurality of pixel values representative of the image.
Abstract:
A system (200) and method (800) for determining whether a sample object (203) has a color that is within a predetermined range is provided. The system (200) includes a light source (201) capable of projecting lights having different light wavelength spectrum upon the sample object (203). A controller (222) causes the light source (201) to project a first light wavelength spectrum upon the sample object (203), then another, then another, and so forth. While each light is projecting upon the object, a monochromatic image capture device (202) captures an image having luminous intensity information. The luminous intensity information, or a subset thereof selected by an image selection tool (232) is then compared to the statistical range, which is derived from a plurality of images taken of a reference object (403).