Abstract:
A SCFCL system includes a first SCFCL, a second SCFCL, and a controller configured to control at least one switch to couple the first SCFCL to a power line between an AC source and a load, and to electrically isolate the second SCFCL from the power line during a first operating mode when the first SCFCL is in service and the second SCFCL serves as a spare. During the first operating mode, the second SCFCL, may be maintained in a latent standby state or an immediate standby state. The second SCFCL may be automatically switched into service to provide for fault current protection in case the first SCFCL needs to be taken out of service for maintenance, repair, or replacement.
Abstract:
Techniques for improving reliability of a superconducting fault current limiting system (SCFCL) are provided. In one particular exemplary embodiment, the technique may be realized as a method of improving a reliability of a superconducting fault current limiting system (SCFCL), the SCFCL system comprising a superconductor provided in a container. The method may comprise providing one or more sensors capable of detecting a fault current proximate to the superconductor; determining a change in the condition of the superconductor as a result of the fault current; and estimating the lifetime of the superconductor based on the change in the condition of the superconductor.
Abstract:
A SCFCL system includes a first SCFCL, a second SCFCL, and a controller configured to control at least one switch to couple the first SCFCL to a power line between an AC source and a load, and to electrically isolate the second SCFCL from the power line during a first operating mode when the first SCFCL is in service and the second SCFCL serves as a spare. During the first operating mode, the second SCFCL, may be maintained in a latent standby state or an immediate standby state. The second SCFCL may be automatically switched into service to provide for fault current protection in case the first SCFCL needs to be taken out of service for maintenance, repair, or replacement.
Abstract:
Apparatus, methods and systems are provided for sealing a door of a slit valve. The invention includes a seal, adapted to extend along a perimeter of a slit valve door; and a hard stop, disposed between the seal and an outer edge of the slit valve door, and adapted to extend along at least a portion of the length of the seal, wherein the hard stop and the seal fill at least a portion of a gap between the slit valve door and a substrate sealing surface. Numerous other aspects are provided.
Abstract:
Techniques for improving reliability of a superconducting fault current limiting system (SCFCL) are provided. In one particular exemplary embodiment, the technique may be realized as a method of improving a reliability of a superconducting fault current limiting system (SCFCL), the SCFCL system comprising a superconductor provided in a container. The method may comprise providing one or more sensors capable of detecting a fault current proximate to the superconductor; determining a change in the condition of the superconductor as a result of the fault current; and estimating the lifetime of the superconductor based on the change in the condition of the superconductor.
Abstract:
Apparatus, methods and systems are provided for sealing the door of a slit valve. In one embodiment, the apparatus includes a seal, adapted to extend along a perimeter of a slit valve door; and a hard stop, disposed between the seal and an outer edge of the slit valve door, and adapted to extend along the length of the seal, wherein the hard stop and elastomer seal fill at least a portion of a gap between the slit valve door and an insert leading to a process chamber.
Abstract:
Techniques for sub-cooling in a superconducting (SC) system is disclosed. The techniques may be realized as a method and superconducting (SC) system comprising at least one insulated enclosure configured to enclose at least a first fluid or gas and a second fluid or gas, and at least one superconducting circuit within the at least one insulated enclosure. The superconducting (SC) system may be sub-cooled using at least the first fluid or gas.
Abstract:
A superconducting fault current limiter (SCFCL) includes a cryogenic tank defining an interior volume, a superconductor disposed in the interior volume, and a refrigeration system configured to adjust a temperature of the superconductor in response to a condition during a steady state operation of the SCFCL. A method of operating a SCFCL includes cooling a superconductor disposed within an interior volume of a cryogenic tank to a temperature less than a critical temperature of the superconductor, and adjusting the temperature of the superconductor in response to a condition during a steady state operation of the SCFCL.
Abstract:
A superconducting fault current limiter (SCFCL) includes a cryogenic tank defining an interior volume, a superconductor disposed in the interior volume, and a refrigeration system configured to adjust a temperature of the superconductor in response to a condition during a steady state operation of the SCFCL. A method of operating a SCFCL includes cooling a superconductor disposed within an interior volume of a cryogenic tank to a temperature less than a critical temperature of the superconductor, and adjusting the temperature of the superconductor in response to a condition during a steady state operation of the SCFCL.