Abstract:
Varifocal lens for camera module incorporated in wireless mobile communication device is provided. The varifocal lens includes: a membrane; a frame which is fixed to the membrane and has a receiving hole formed in the middle; a transparent substrate which is fixed to the frame to seal optical fluid received in the receiving hole; one or more actuators to change a curvature of a fluid lens part by bending the circumference of the fluid lens part formed around a central portion of the receiving hole; and a restriction lessening member which is adapted to lessen a restrictive force of an edge of the fluid lens part, is made of a transparent material, has with an area smaller than the fluid lens part to correspond to an inner side of the fluid lens part except the edge of the fluid lens part, and has a larger Young's modulus than the membrane.
Abstract:
A varifocal lens structure and a method of manufacturing the same, the varifocal lens structure including: a frame having a fluid chamber filled with an optical fluid and formed of polymethylsiloxane (PDMS) containing a predetermined fluid; a transparent cover disposed on a top surface of the frame so as to cover the fluid chamber; a transparent elastic membrane disposed on a bottom surface of the frame so as to form a lower wall of the fluid chamber; and an actuator disposed on the elastic membrane.
Abstract:
A varifocal lens structure, a method of manufacturing the varifocal lens structure, an optical lens module, and a method of manufacturing the optical lens module. The varifocal lens structure includes a liquid lens unit including a silicone membrane that includes a first silicone elastomer, a polymer actuator disposed on an upper surface of the silicone membrane, and an adhesive silicone layer that is disposed between the silicone membrane and the polymer actuator and includes a second silicone elastomer.
Abstract:
An image sensing apparatus with artificial ommatidia includes an imaging optical lens group forming a concave focal surface, an artificial ommatidia unit having a curved top surface corresponding to the concave focal surface and a flat bottom surface, and an image sensor disposed under the artificial ommatidia unit. The artificial ommatidia unit is disposed under the imaging optical lens group so that the curved top surface is coincided with the concave focal surface of the imaging optical lens group. The artificial ommatidia unit having a plurality of artificial ommatidia collects light emitting from the imaging optical lens group, and guides the light to the bottom surface thereof.
Abstract:
An optical apparatus such as a varifocal fluidic lens is provided. Optical apparatus includes a spacer frame, optical fluid, an elastic membrane, an actuator, an actuator frame, and a thermally deformable frame. Spacer frame defines an internal space including a lens portion and a driving portion that connect to each other, and the driving portion is disposed to surround the lens portion disposed in the center area of the internal space. Optical fluid is filled in the internal space defined by the spacer frame. The elastic membrane is attached on a surface of the spacer frame, to cover a side of the internal space, and the thermally deformable plate is attached on the other surface of the spacer frame, to cover the other side of the internal space. The thermally deformable plate deforms to increase or decrease a volume of the internal space according to a change in temperature.
Abstract:
A tunable capacitor using an electrowetting phenomenon includes a first electrode; a second electrode which is spaced apart from the first electrode and faces the first electrode; a fluidic channel which is disposed between the first electrode and the second electrode; a first insulating layer which is disposed between the first electrode and the fluidic channel; and a conductive fluid which is disposed in the fluidic channel and moves along the fluidic channel when a direct current (DC) potential difference occurs between the first and second electrodes. Accordingly, it is possible to fabricate the tunable capacitor with the simplified fabrication process, good reliability and durability, and no restriction on the tuning range.
Abstract:
An image sensing apparatus with artificial ommatidia includes an imaging optical lens group forming a concave focal surface, an artificial ommatidia unit having a curved top surface corresponding to the concave focal surface and a flat bottom surface, and an image sensor disposed under the artificial ommatidia unit. The artificial ommatidia unit is disposed under the imaging optical lens group so that the curved top surface is coincided with the concave focal surface of the imaging optical lens group. The artificial ommatidia unit having a plurality of artificial ommatidia collects light emitting from the imaging optical lens group, and guides the light to the bottom surface thereof.
Abstract:
A wafer-level passivation structure of a micro-device, a micro-device including the same, and methods of manufacturing the wafer-level passivation structure and the micro-device may be provided. In particular, the passivation structure may include a spacer that is disposed on a substrate, covers a portion of the first surface, and has an elastic property, and an anti-adhesion layer that is disposed on a surface of the substrate between the spacer. The spacer may form a lattice pattern. The spacer may be formed of a silicon. The anti-adhesion layer may be a metallic film, an oxide film, or a nitride film.
Abstract:
A varifocal lens structure, a method of manufacturing the varifocal lens structure, an optical lens module, and a method of manufacturing the optical lens module. The varifocal lens structure includes a liquid lens unit including a silicone membrane that includes a first silicone elastomer, a polymer actuator disposed on an upper surface of the silicone membrane, and an adhesive silicone layer that is disposed between the silicone membrane and the polymer actuator and includes a second silicone elastomer.
Abstract:
A variable-focus liquid lens is provided. The liquid lens includes a membrane and a fluid. The membrane is made of a transparent elastomer, and the fluid fills a predetermined space to contact at least a lens surface of the membrane. The membrane and the fluid are respectively made of materials repulsive to each other, for example, hydrophilic and hydrophobic materials or oleophilic and oleophobic materials. Accordingly, a repulsive force between the fluid and the membrane can prevent the absorption or leaking of the fluid into/through the membrane.