Abstract:
In one embodiment, the electrowetting device includes a first medium; a second medium that is not mixed with the first medium and has a refractive index different from a refractive index of the first medium; an upper electrode that adjusts an angle of a boundary surface between the first medium and the second medium; and a barrier wall that has a side surface surrounding the first and second mediums, allows the upper electrode to be disposed on a portion of the side surface, and has irregular widths.
Abstract:
Wire grid polarizers, methods of fabricating a wire grid polarizer and display panels including a wire grid polarizer are provided, the methods include preparing a mold having a lower surface in which a plurality of parallel fine grooves are formed, and arranging the mold on a transparent substrate. The plurality of parallel fine grooves are filled with a conductive liquid ink. A plurality of parallel conductive nano wires are formed on the transparent substrate by curing the conductive liquid ink. The mold is removed.
Abstract:
An ink-jet printhead includes a substrate on which an ink chamber to be supplied with ink to be ejected is formed on a front surface of the substrate, a manifold for supplying ink to the ink chamber is formed on a rear surface of the substrate, and an ink passage in communication with the ink chamber and the manifold is formed parallel to the front surface of the substrate, a nozzle plate formed on the front surface of the substrate, a nozzle formed through the nozzle plate through which ink is ejected from the ink chamber, a heater formed on the nozzle plate, and an electrode electrically connected to the heater for applying current to the heater.
Abstract:
Provided are a thin film transistor for display devices and a manufacturing method of the thin film transistor. The thin film transistor for display devices includes: a flexible substrate; a gate electrode layer formed on the flexible substrate; a first insulating layer formed on the flexible substrate and the gate electrode; a source and a drain formed on the first insulating layer; an active layer formed on the first insulating layer between the source and the drain; a second insulating layer formed on the first insulating layer, the source, the drain, and the active layer; and a drain electrode that opens the second insulating layer to be connected to the drain and is formed of a CNT dispersed conductive polymer.
Abstract:
An image drum manufacturing method including: providing a hollow cylindrical mold having a plurality of mold grooves circumferentially cut in its inner circumferential surface and a core portion having a smaller diameter than a hollow of the mold and having a slit-shaped combination groove; filling a conductive material into the mold grooves of the mold; inserting a control unit for individually applying a voltage to each terminal in the combination groove of the core portion, so that a conductive pattern corresponding to the conductive material is partially exposed; inserting the core portion into the mold so that the conductive pattern corresponds to the conductive material filled into each mold groove; and forming a drum body to be integrally formed with the control unit and the conductive material by filling a molten plastic into a space between the mold and the core portion.
Abstract:
An image drum manufacturing method including: providing a hollow cylindrical mold having a plurality of mold grooves circumferentially cut in its inner circumferential surface and a core portion having a smaller diameter than a hollow of the mold and having a slit-shaped combination groove; filling a conductive material into the mold grooves of the mold; inserting a control unit for individually applying a voltage to each terminal in the combination groove of the core portion, so that a conductive pattern corresponding to the conductive material is partially exposed; inserting the core portion into the mold so that the conductive pattern corresponds to the conductive material filled into each mold groove; and forming a drum body to be integrally formed with the control unit and the conductive material by filling a molten plastic into a space between the mold and the core portion.
Abstract:
A monolithic ink-jet printhead, and a method of manufacturing the same, includes a substrate having an ink chamber, an ink channel, and a manifold, a nozzle plate formed on the substrate, a nozzle, a heater, and a conductor. The ink chamber includes sidewalls formed to a predetermined depth from the front surface of the substrate for defining side surfaces of the ink chamber and a bottom wall formed parallel to the front surface of the substrate at the predetermined depth from the front surface of the substrate for defining a bottom surface of the ink chamber. The nozzle plate includes a plurality of passivation layers, a heat dissipating layer being stacked on the passivation layers, and the nozzle for ejecting ink out of the printhead. The heater is positioned above the ink chamber and heats ink in the ink chamber and the conductor delivers a current to the heater.
Abstract:
An ink-jet printhead includes a substrate on which an ink chamber to be supplied with ink to be ejected is formed on a front surface of the substrate, a manifold for supplying ink to the ink chamber is formed on a rear surface of the substrate, and an ink passage in communication with the ink chamber and the manifold is formed parallel to the front surface of the substrate, a nozzle plate formed on the front surface of the substrate, a nozzle formed through the nozzle plate through which ink is ejected from the ink chamber, a heater formed on the nozzle plate, and an electrode electrically connected to the heater for applying current to the heater.
Abstract:
A method of fabricating a black matrix of a color filter is provided. In the method, a black matrix layer formed of a hydrophobic organic material is formed on an upper surface of a transparent substrate. A black matrix is formed by patterning the black matrix layer. Side surfaces of the black matrix are made hydrophilic by irradiating a lower surface of the transparent substrate with ultraviolet rays while heating the black matrix. A black matrix provided by the method is also disclosed.
Abstract:
An organic electro-luminescent display (“OELD”) and a method of manufacturing the OELD include: a substrate; a plurality of anodes substantially parallel with one another in a first direction and disposed on the substrate; a plurality of cathodes disposed substantially parallel with one another in a second direction orthogonal to the plurality of anodes; organic electro-luminescent parts disposed at intersections between the anodes and the cathodes; and cathode separators disposed between the cathodes. Upper portions of the cathode separators are wider than lower portions of the cathode separators; and protrusions protrude from sides of the upper portions of the cathode separators.