Abstract:
A slow release liquid additive concentrate for use in an engine oil filter and a method for extending an oil drain interval for an engine. The additive concentrate has therein at least one detergent and at least one antioxidant. The additive concentrate has a tan delta of greater than about 5.
Abstract:
Lubricated surfaces, lubricant compositions for lubricating a surface, and methods for increasing antiwear properties in lubricants. The lubricated surface is provided by a lubricant composition including a base oil of lubricating viscosity, at least one metal salt of phosphorothioic acid, and an amount of at least one hydrocarbon soluble titanium compound effective to provide an increase in antiwear properties of the lubricant composition. A ratio of titanium metal to phosphorus in the antiwear agent ranges from about 0.3:1 to about 1.5:1.
Abstract:
The present application is directed to compounds that are the reaction product of (i) a polyacrylate, (ii) a hindered phenol, (iii) a diaryldiamine and optionally (iv) an alkyl amine. Methods for making these compounds and formulations employing the compounds are also disclosed.
Abstract:
A novel a polymer dispersant comprising an additive reaction product obtained by reacting a first monomer comprising a mixture of alkylacrylates of varying chain lengths with a second monomer comprising an olefinic carboxylic acylating agent under conditions effective for free radical polymerization of the first and second monomers to provide a base polymer comprising an acylated alkylacrylate copolymer, and wherein the base polymer is further reacted with a hydrocarbyl amine to provide an amine-functionalized polyalkylacrylate copolymer dispersant. The base polymer intermediate has a number average molecular weight between about 5,000 to about 50,000. The polyalkylacrylate copolymer dispersant has good dispersancy, low temperature properties, thickening efficiency, and antioxidancy properties. They also can improve fuel economy when used in engine lubricating compositions. They also are precipitation- or sedimentation-resistant, and do not cause or encourage such formations in finished fluids incorporating them.
Abstract:
A novel reaction product and method for making the reaction product. The reaction product is a copolymer obtained by reacting together i) an acylated alkylacrylate copolymer having a number average molecular weight ranging from about 5,000 to about 500,000; ii) a hydrocarbyl acylating agent having a number average molecular weight ranging from about 500 to about 5000; and iii) a compound selected from the group consisting of (a) a polyamine; (b) a polyol; and (c) an aminoalcohol to provide a functionalized polyalkylacrylate copolymer. According to the reaction, a mole ratio of component (i) to (ii) ranges from about 1:10 to about 5:1.
Abstract:
A novel reaction product and method for making the reaction product. The reaction product is a copolymer obtained by reacting together i) an acylated alkylacrylate copolymer having a number average molecular weight ranging from about 5,000 to about 500,000; ii) a hydrocarbyl acylating agent having a number average molecular weight ranging from about 500 to about 5000; and iii) a compound selected from the group consisting of (a) a polyamine; (b) a polyol; and (c) an aminoalcohol to provide a functionalized polyalkylacrylate copolymer. According to the reaction, a mole ratio of component (i) to (ii) ranges from about 1:10 to about 5:1.
Abstract:
The present application is directed to compounds that are the reaction product of (i) a hydrocarbyl phenol, (ii) a hindered phenol; (iii) an diaryldiamine and (iv) an aldehyde. Methods of making and using the compounds of the present application are disclosed.
Abstract:
A novel a multi-functional polymer viscosity modifier comprising an additive reaction product obtained by reacting a first monomer comprising an alkylacrylate with a second monomer comprising an olefinic carboxylic acylating agent under conditions effective for free radical polymerization of the first and second monomers to provide a base polymer comprising an acylated alkylacrylate copolymer, and wherein the base polymer optionally may be further reacted with an amine compound to provide a multi-functional polyalkylacrylate copolymer. The base polymer has good thickening efficiency. The multi-functional polyalkylacrylate copolymer dispersant viscosity modifier has good thickening efficiency. The base polymer and the multi-functional polyalkylacrylate copolymer viscosity modifier have good thickening efficiency, low temperature properties, dispersancy, and antioxidancy properties. They also have no precipitation or sedimentation, nor cause or encourage such formations in finished fluids incorporating them.
Abstract:
A novel a polymer dispersant comprising an additive reaction product obtained by reacting a first monomer comprising a mixture of alkylacrylates of varying chain lengths with a second monomer comprising an olefinic carboxylic acylating agent under conditions effective for free radical polymerization of the first and second monomers to provide a base polymer comprising an acylated alkylacrylate copolymer, and wherein the base polymer is further reacted with a hydrocarbyl amine to provide an amine-functionalized polyalkylacrylate copolymer dispersant. The base polymer intermediate has a number average molecular weight between about 5,000 to about 50,000. The polyalkylacrylate copolymer dispersant has good dispersancy, low temperature properties, thickening efficiency, and antioxidancy properties. They also can improve fuel economy when used in engine lubricating compositions. They also are precipitation- or sedimentation-resistant, and do not cause or encourage such formations in finished fluids incorporating them.
Abstract:
Lubricated surfaces, lubricant compositions for lubricating a surface, and methods for increasing antiwear properties in lubricants. The lubricated surface is provided by a lubricant composition including a base oil of lubricating viscosity, at least one metal salt of phosphorothioic acid, and an amount of at least one hydrocarbon soluble titanium compound effective to provide an increase in antiwear properties of the lubricant composition. A ratio of titanium metal to phosphorus in the antiwear agent ranges from about 0.3:1 to about 1.5:1.