Abstract:
A driver and capacitance measuring circuit includes a voltage source that selectively generates an output voltage at a first node during a driver mode to alter a capacitance of a device that is connected to the first node and that has a variable capacitance. A current source selectively provides one of a charging and discharging current at the first node during a measurement mode. A capacitance calculating circuit samples a voltage at the first node during the measurement node, determines a voltage change rate of the first node during the measurement mode and calculates the capacitance of the device based on the voltage change rate and a value of the one of the charging and discharging current.
Abstract:
A method and circuit are disclosed for controlling the write head of a magnetic disk storage device. The circuit includes a pull-up device coupled to a terminal of the write head, a current sink circuit which is coupled to the write head terminal and a bootstrap circuit coupled to the current sink circuit. When reversing the direction of current flow through the write head so that current is drawn from the write head from the write head terminal, the bootstrap circuit and the current sink circuit are activated. When the current in the write head nears and/or slightly surpasses the desired destination current level, the bootstrap circuit is deactivated and the pull-up device is thereafter immediately activated for a predetermined period of time.
Abstract:
A high-pass filter in particular for high-frequency applications and of the type comprising at least one input terminal (IN) and at least one output terminal (OUT) between which is defined a transfer function (FdT) and is inserted a biquadratic cell (18) incorporating a series of transconductance stages (2, 3, 4, 5) comprises a generator circuit (29) of variable currents (i.sub.K1, i.sub.K2) connected between a pair of stages (2, 3) of the biquadratic cell (18) and a voltage reference (GND). Said generator allows introduction of programmable zeroes in the transfer function (FdT) of the filter (20).
Abstract:
A transconductor stage for high-frequency filters operated on a low voltage supply, being of a type which comprises an input circuit portion having signal inputs, further comprises a pair of interconnected differential cells (2,3) being associated each with a corresponding signal input. Each cell incorporates at least one pair of bipolar transistors (Q1,Q2;Q3,Q4) having at least one corresponding terminal thereof (e.g. the emitter terminal) connected in common.
Abstract:
A write driver driving a write current through a head connected to the write head by an interconnect. The write driver includes a circuit matching output resistance to the odd characteristic impedance of the interconnect and a voltage boosting circuit. The voltage boosting circuit in connected between a high voltage reference or supply voltage and a low voltage reference, and includes a current source, such as a MOS transistor, connected to the input node of a capacitor. During the overshoot duration, the current source operates at saturation to generate a pulsed current with an amplitude of half the load current. The circuit includes another transistor in series with the current generator between the capacitor and the driver output. A forward bias diode is connected between the capacitor output node and high voltage reference and enters reverse bias during overshoot duration swinging the driver output voltage above supply voltage.
Abstract:
A write driver for driving a write current through a write head connected to the write head by an interconnect or flexible transmission line. The write driver includes a circuit matching an output impedance of the write driver to the odd characteristic impedance of the interconnect and includes a current source generating a current output to the write head. The write driver provides a current amplification effect as the output current is half the write current driven through the write coil. The impedance matching circuit includes an output resistor with a resistance equal to the odd characteristic impedance of the interconnect. The write driver includes a voltage source that operates to maintain a voltage drop of zero on the output resistor during the initial period of twice the transmission delay of the interconnect.
Abstract:
A method and circuit are disclosed for controlling the write head of a magnetic disk storage device. The circuit includes a pull-up device coupled to a terminal of the write head, for selectively providing a current to the write head though the write head terminal. The circuit further includes parallel-connected current sink circuits, each of which is coupled to the write head terminal and selectively activated to draw current from the write head via the write head terminal. A first transistor is connected in series between the pull-up device and the write head terminal and biased to provide a voltage differential between the write head terminal and the pull-up device. A second transistor is connected in series between the write head terminal and the current sink circuits and biased to provide a voltage differential between the write head terminal and the current sink circuits.
Abstract:
A low pass filter with programmable equalization includes at least one biquadratic cell and a converter of the input voltage into a current, proportional to the derivative of the input voltage, that is injected on a node of the biquadratic cell to introduce two real and opposed zeros in the transfer function of the filter. The low pass filter includes two structurally similar circuits functionally connected in cascade. Each circuit includes a biquadratic cell and an input stage having two outputs injecting, through a first current output, the current to an input capacitor of the respective biquadratic cell, by a direct coupling in a first of the two circuits and in an inverted manner in the second of the two circuits. A second voltage output is coupled to an input of the respective biquadratic cell.
Abstract:
An apparatus (and method) is provided that reduces thermal interference in the read signal of a disk drive. A variable or programmable resistance is used to change the transfer function of a filter in the read channel of the disk drive to filter the read signal. The filter has a first transfer function (first cut-off frequency) related to the programmed resistance during normal operation of the disk drive (i.e. when thermal interference is not detected). When thermal interference is detected in the read signal, the resistance is programmed to another value resulting in the filter having a second transfer function (second cut-off frequency). The resistance element is variable or programmable to different values resulting in different programmable transfer functions (or one of a multitude of cut-off frequencies) for the filter. In the preferred embodiment, detection of thermal interference increases the cut-off frequency of the filter thereby filtering, or reducing the effects of, the thermal interference in the read signal.
Abstract:
A low offset amplifier has an output stage constituted by an npn transistor and a pnp transistor in a push-pull arrangement, and a driver stage. The latter includes a current-mirror circuit having, in its input branch, a pnp transistor in series with a first constant-current generator and, in its output branch, an npn transistor, and two complementary bipolar transistors with collectors connected together to the output terminal and the bases are connected together to the input terminal of the amplifier. The emitter of the pnp transistor of the driver stage is connected to the positive terminal of the supply by a second constant-current generator and to the base of the npn transistor of the output stage, and the emitter of the npn transistor of the driver stage is connected to the negative terminal of the supply by the npn transistor of the output branch of the current-mirror circuit and to the base of the pnp transistor of the output stage. The amplifier has a very low or zero offset (Vos=Vout-Vin).