Abstract:
Disclosed are novel nickel base single crystal alloy compositions consisting essentially of, by weight, about 4.0-10.0% chromium, 1.5-6.0% cobalt, 1.0-12.0% molybdenum, 3.0-10.0% tungsten, 2.5-7.0% titanium, 2.5-7.0% aluminum, 3.0-10.0% tantalum, about 0.02%-1.5% of hafnium and/or about 0.02%-1.0% silicon, from about 0.02%-1.0% each of yttrium and/or lanthanum, from about 0.3% to about 8.0% rhenium; from about 0.2% to about 4.0% vanadium and/or from about 0.2% to about 4.0% niobium; from about 0.02% to about 3% platinum; from about 0 to about 1.0% boron, the balance nickel, and the balance nickel.Methods of thermal treatment and coating of the novel alloys to enhance their mechanical properties are also disclosed, as are articles produced by such methods.
Abstract:
Disclosed is a novel high temperature coating system comprised of two successively deposited layers of different respective materials which may be applied to turbine engine components to provide improved oxidation and corrosion resistance. The second applied layer is a composition having the general formula MCrAlY wherein M is a solid solution of molybdenum in nickel, cobalt or nickel plus cobalt. The first applied layer or interlayer, which is applied directly to the turbine engine component, is an aluminum coating.
Abstract:
A method of controlling the final coating thickness of a diffused aluminide coating on a metal substrate. The method includes: (a) depositing an alumina-doped platinum-silicon powder onto a metal substrate, (b) heating the coated substrate to diffuse the platinum-silicon powder into the substrate and removing the undiffused scale, (c) depositing an aluminum-bearing powder onto the platinum-silicon-enriched substrate, and (d) heating the coated substrate to diffuse the aluminum-bearing powder into the substrate and removing the undiffused scale. The depositions are preferably done electrophoretically, in which case the Pt--Si deposition bath is doped with alumina or some other inert particulate. Alternatively, slurry deposition may be used. The method may also be used to deposit Pd--Si coatings onto metal substrates.
Abstract:
One embodiment of the present invention is a unique engine hot section component having a coating system operative to reduce heat transfer to the hot section component. Another embodiment is a unique method for making a gas turbine engine hot section component with a coating system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines, hot section components and coating systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
Abstract:
One embodiment of the present invention is a unique engine hot section component having a coating system operative to reduce heat transfer to the hot section component. Another embodiment is a unique method for making a gas turbine engine hot section component with a coating system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines, hot section components and coating systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
Abstract:
A method of coating a substrate, the method including depositing mullite on the substrate during a first time period via thermal spraying to form a first layer, the mullite comprising mullite powder formed via at least one of a fused plus crush or sinter plus crush process; and depositing a second material on the first layer to form a second layer, wherein the substrate is at a temperature less than approximately 50 degrees Celsius at approximately a beginning of the first time period. In some embodiments, the method may further include depositing silicon to form a silicon bond layer between the substrate and mullite layer.
Abstract:
Nickel aluminide single crystal alloys having improved strength and ductility at elevated temperatures, produced by major elemental additions to strengthen the Ni.sub.3 Al phase by solid solutioning and/or secondary phase formation. The major elemental additions comprise (by weight) 7-20% Al, 0.5-9% molybedenum, 0.5-10% tungsten and 2-15% titanium. Optional minor elemental additions of boron, manganese, silcon and/or hafnium are preferred.
Abstract:
Disclosed are novel nickel base single crystal alloy compositions consisting essentially of, by weight, about 8.0-14.0% chromium, 1.5-6.0% cobalt, 0.5-2.0% molybdenum, 3.0-10% tungsten, 2.5-7.0% titanium, 2.5-7.0% aluminum, 3.0-6.0% tantalum, about 0.005% to about 1.0% each of hafnium and/or silicon, optional minor amounts of yttrium, lanthanum and/or manganese, and the balance nickel.Methods of thermal treatment and coating of the novel alloys to enhance their mechanical properties are also disclosed, as are articles produced by such methods.
Abstract:
Erosion resistance is imparted to a metallic substrate without an attendant loss of fatigue life in the substrate by applying to the substrate a first layer comprising palladium, platinum or nickel in direct contact with the substrate and then applying a second layer which overcoats the first layer, the second layer being comprised of a tungsten-carbon alloy or a material formed of a tungsten matrix having dispersed tungsten-carbon compound phases therein. In another embodiment erosion resistance is imparted by employing a coating which comprises a first ductile layer on the substrate of palladium, platinum or nickel; a second layer comprising substantially pure tungsten; and a third layer comprising a material formed of a tungsten-carbon alloy or a material formed of a tungsten matrix having dispersed tungsten-carbon compound phases.
Abstract:
Disclosed are novel nickel-base single crystal alloy compositions consisting essentially of, by weight, about 8.0-14.0% chromium, 1.5-6.0% cobalt, 0.5-2.0% molybdenum, 3.0-10.0% tungsten, 2.5-7.0% titanium, 2.5-7.0% aluminum, 3.0-6.0% tantalum and the balance nickel.A combination of thermal treatment and coating of the novel alloys to enhance their mechanical properties is also disclosed.