Abstract:
One embodiment of the present invention is a unique engine hot section component having a coating system operative to reduce heat transfer to the hot section component. Another embodiment is a unique method for making a gas turbine engine hot section component with a coating system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines, hot section components and coating systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
Abstract:
One embodiment of the present invention is a unique system for measuring radiant energy in gas turbine engines, gas turbine engine components and gas turbine engine/component rigs. Another embodiment is a unique method for measuring radiant energy in gas turbine engines, gas turbine engine components and gas turbine engine/component rigs. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for measuring radiant energy. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
Abstract:
Disclosed is an exhaust mixer (50) including a passage (54) extending from an inlet (56) to an outlet (58) that is coincident with a centerline axis of mixer (50). Several ridges (68) are circumferentially disposed about the axis and each flare away from the centerline axis relative to a direction along the centerline axis from inlet (56) toward outlet (58). Ridges (68) each define a corresponding one of several inner channels (74) radially disposed about passage (54) that each intersect passage (54) between inlet (56) and outlet (58). Several outer channels (84) are also radially disposed about passage(54) and are each positioned between a corresponding pair of inner channels (74). Ridges are each shaped to turn inner channels (74and outer channels (84) about the axis as ridges (68) extend along the indicated direction. Inner channels (74) diverge away from the axis and one another in this direction while outer channels (84) converge toward the axis and one another in this direction.
Abstract:
Systems and methods for suppressing infrared radiation generated by a turbine engine. A system comprises a primary assembly having a center body, a plurality of vanes extending from the center body, an outer radial duct with the plurality of vanes extending therethrough, a structural baffle, and a mixer. The primary assembly is disposed in the exhaust flow path of a turbine engine and encased in ducting and/or an airfoil. An air flow path defined between the center body and outer radial duct is axially spit by an interface rim and flow segregator. The flow segregator segregates engine core flow from ambient air flow.
Abstract:
One embodiment of the present invention is a unique system for measuring radiant energy in gas turbine engines, gas turbine engine components and gas turbine engine/component rigs. Another embodiment is a unique method for measuring radiant energy in gas turbine engines, gas turbine engine components and gas turbine engine/component rigs. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for measuring radiant energy. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
Abstract:
An apparatus includes a first flow panel and a second flow panel. The first flow panel includes a first flow portion and a second flow portion. The first flow portion defines a flow passageway within which a gas can flow in a first direction. The second flow portion defines a set of microchannels in fluid communication with the flow passageway and within which the gas can flow in a second direction, where the second direction is nonparallel to the first direction. The first flow panel is coupled to the second flow panel to define a heat transfer passageway within which a heat transfer medium can be conveyed in a third direction, where the third direction is opposite the first direction. In such embodiments, the heat transfer passageway is fluidically isolated from the flow passageway and the set of microchannels by a thermally conductive side wall.