Abstract:
In a unidirectional or broadcasting communication system using OFDM transmission from a base station to subscriber units, a device for achieving a bi-directional channel comprising: A. a transmitter in the subscriber units for transmitting signals that are orthogonal to signals transmitted from the base station and are also orthogonal to signals from other subscriber units; B. a receiver in the base station for receiving and processing together signals from a plurality of subscriber units; C. a controller for allocating to each subscriber unit several carriers that are separated from each other (not adjacent to each other).
Abstract:
A method for computing ECINR in communication systems, by calculating or measuring instantaneously CINR (yi) or per-tone CINR value for each channel and/or bandwidth and/or signal of interest, selecting κ and β parameters according to MCS and/or FEC block size used, calculating ECINR by using the CINR ((yi) or per-tone CINR values and the κ and β parameters with a generalized EESM formula, and providing a communication system with the updated γeff which is the ECINR value.
Abstract:
In a MIMO communication system, a method for mode selection comprising: a. measuring communication variables including SNR, Correlation, Interference and Mobility; b. automatic change of mode, according to predefined criteria and responsive to the measured communication variables. The modes from which the selection is made include Spatial Multiplexing, Beamforming, Space-Time Coding and Beamforming.
Abstract:
A method for providing a personalized bidirectional channel in broadcasting systems. In cellular broadcasting system the method contains the steps of: allocating a first group of subcarriers to broadcast transmission and a second group of subcarriers to personalized channels; reducing interference in the broadcast transmission by using equalizer; and reducing interference in the personalized channels by using controlled allocation of subcarriers in the second group to each subscriber. In OFDM broadcasting system the method contains the steps of: transmitting OFDM transmission from the base-station to the subscriber units; transmitting from the subscriber units to the base-station signals that are orthogonal to signals transmitted from the base-station; and receiving the orthogonal signals at the base-station.
Abstract:
A communication system using OFDM transmission from a base station to subscriber units, includes means for achieving a bi-directional channel. These means comprise transmitting means in the subscriber units for the transmission of signal synchronous with the guard time interval in the OFDM transmission, and receiving means in the base station for the reception of the transmitted signals. The system also includes signal shaping means in the receiver of the base station and/or the subscriber unit for the application of a window in time to signals received therein. A communication system includes a combination of CDMA modulation codes and OFDM coding/decoding means to achieve orthogonality between signals from the various users in the uplink. A communication system includes a combination of OFDM and channeling means for achieving orthogonality between signals from the various users in the uplink. Automatic Frequency Control is achieved with means in the mobile unit for achieving a frequency-lock to the base station.
Abstract:
A Cellular network system wherein the physical layer as defined in 802.16a includes means for its optimization for mobile operators for improved reliability, coverage, capacity, user location, fully scalability, and mobility from 2-6 Ghz, while working in a reuse of 1. The same RF frequency is allocated to all sectors in the cell. The system further includes means for its operation in a Coordinated Synchronous mode, wherein permutations, collisions and averaging interferences from other cells cause limitations on the use of high QAM modulations, which sometimes can increase capacity up to three times (64 QAM instead QPSK).
Abstract:
A preamble code usable in Orthogonal Frequency Division Multiple Access (OFDMA) for the physical layer (PHY), selected for improved PAPR in a 1024, 512 or 128 FFT OFDMA mode. Tables 2 to 7 detail code sequences having improved PAPR performance. The disclosed codes may be used in cellular wireless.
Abstract:
Selecting an optimal ECINR mode in a digital communication system, by constructing an offline relevant modes database having a list of transmission-reception methods for possible MIMO configurations, and mobility characterization, gathering online channel state and capabilities information, retrieving parameters from the relevant modes database, based on the gathered data/information for creating a concurrent list, excluding some MIMO modes off the list, for which the available channel matrix is insufficient, the modes left at the end of this step being “currently relevant modes’, calculating post processing per tome physical CINR (PCINR) for each of the currently relevant modes found, calculating ECINR for each of the currently relevant modes using the PCINR, choosing the optimal MIMO mode and MCS combination, which is the parameters' combination with highest throughput, which provide the best ECINR under QoS requirements.
Abstract:
A cellular network including means for sensing the presence of Microphones and Broadcastings and for adjusting resources usage for not interfering the transmissions of the Microphones and Broadcastings. A cellular network including means for sensing the presence of Microphones and Broadcastings and for adjusting resources usage for not interfering with the transmissions of the Microphones and Broadcastings over a certain level.
Abstract:
A method for providing a personalized bidirectional channel in broadcasting systems. In cellular broadcasting system the method contains the steps of: allocating a first group of subcarriers to broadcast transmission and a second group of subcarriers to personalized channels; reducing interference in the broadcast transmission by using equalizer; and reducing interference in the personalized channels by using controlled allocation of subcarriers in the second group to each subscriber. In OFDM broadcasting system the method contains the steps of: transmitting OFDM transmission from the base-station to the subscriber units; transmitting from the subscriber units to the base-station signals that are orthogonal to signals transmitted from the base-station; and receiving the orthogonal signals at the base-station.