Abstract:
A system and a method for measuring a signal propagation speed in a liquid contained in a vessel or in a gaseous medium contained in the same vessel above the surface of the liquid are proposed. A transmitter transmits a first signal in a first direction which is at an acute or right angle to a first reflective surface, wherein the first reflective surface reflects the first signal so that it travels in a second direction is received by a first acoustic or electromagnetic receiver. The transmitter transmits a second signal in a predetermined third direction which is at an acute angle to the first direction, where the first or a second reflective surface reflects the second signal so that it travels in a predetermined and angular fourth direction with respect to the first or second reflective surface and is received by the first or a second acoustic or electromagnetic receiver. The speed of sound is then determined under the assumption that both the first and the second signals travel at the same average speed.
Abstract:
A system and a method for non-intrusive and continuous level measurement of a liquid enclosed by a solid wall of a vessel. The system comprises an ultrasonic transmitter for generating an ultrasound wave and for emitting it into the vessel wall, an ultrasonic receiver for receiving the ultrasound wave, and an electronic control and data processing unit (ECDU) for controlling operation of the transmitter and of the receiver and for determining the liquid level. The transmitter is able to emit the ultrasound wave as a primary Lamb wave into the vessel wall so that a part of the primary Lamb wave leaks from the vessel wall into the liquid in form of a pressure wave. The ECDU is adapted to repeatedly determine the time of flight of the pressure wave, change the ultrasonic frequency of the transmitter until the determined time of flight reaches a minimum, and determine the liquid level.
Abstract:
A system and a method for non-intrusive and continuous level measurement of a liquid enclosed by a solid wall of a vessel. The system comprises an ultrasonic transmitter for generating an ultrasound wave and for emitting it into the vessel wall, an ultrasonic receiver for receiving the ultrasound wave, and an electronic control and data processing unit (ECDU) for controlling operation of the transmitter and of the receiver and for determining the liquid level. The transmitter is able to emit the ultrasound wave as a primary Lamb wave into the vessel wall so that a part of the primary Lamb wave leaks from the vessel wall into the liquid in form of a pressure wave. The ECDU is adapted to repeatedly determine the time of flight of the pressure wave, change the ultrasonic frequency of the transmitter until the determined time of flight reaches a minimum, and determine the liquid level.
Abstract:
An application relates to a system and a method for non-intrusive and continuous level measurement in a cylindrical vessel. The system comprises an ultrasonic transducer for generating an ultrasound wave and for emitting it into the vessel wall, and an electronic control and data processing unit (ECDP) for controlling operation of the transducer and for determining the liquid level from a time of flight of the ultrasound wave. The transducer emits the ultrasound wave as a primary Lamb wave into the vessel wall so that a part of the primary Lamb wave leaks into the liquid. The ECDP changes the ultrasonic frequency of the transducer until the transducer receives a reflection of the emitted ultrasound wave in form of a reflection of the pressure wave, determine the corresponding time of flight, and determine the liquid level from the time of flight and from parameters of the ultrasound waves.
Abstract:
A system and a method for measuring a speed of sound in a liquid contained in a vessel or in a gaseous medium contained in the same vessel above the surface of the liquid. The method comprises: transmitting a first acoustic signal into the vessel to travel inside a first travelling plane. Emitting a second acoustic signal into the wall of the vessel to travel inside the wall of the vessel along a perimeter of the first travelling plane until it is received and obtaining a first time of flight of the first acoustic signal and a second time of flight of the second acoustic signal and obtaining a speed of sound in the vessel wall from a data memory. Determining the speed of sound in the liquid or in the gaseous medium from the length of the travelling path of the first acoustic signal and from the first time of flight.
Abstract:
A system and a method for measuring a signal propagation speed in a liquid contained in a vessel or in a gaseous medium contained in the same vessel above the surface of the liquid are proposed. A transmitter transmits a first signal in a first direction which is at an acute or right angle to a first reflective surface, wherein the first reflective surface reflects the first signal so that it travels in a second direction is received by a first acoustic or electromagnetic receiver. The transmitter transmits a second signal in a predetermined third direction which is at an acute angle to the first direction, where the first or a second reflective surface reflects the second signal so that it travels in a predetermined and angular fourth direction with respect to the first or second reflective surface and is received by the first or a second acoustic or electromagnetic receiver. The speed of sound is then determined under the assumption that both the first and the second signals travel at the same average speed.
Abstract:
A system and a method for measuring a speed of sound in a liquid contained in a vessel or in a gaseous medium contained in the same vessel above the surface of the liquid. The method comprises: transmitting a first acoustic signal into the vessel to travel inside a first travelling plane. Emitting a second acoustic signal into the wall of the vessel to travel inside the wall of the vessel along a perimeter of the first travelling plane until it is received and obtaining a first time of flight of the first acoustic signal and a second time of flight of the second acoustic signal and obtaining a speed of sound in the vessel wall from a data memory. Determining the speed of sound in the liquid or in the gaseous medium from the length of the travelling path of the first acoustic signal and from the first time of flight.
Abstract:
An application relates to a system and a method for non-intrusive and continuous level measurement in a cylindrical vessel. The system comprises an ultrasonic transducer for generating an ultrasound wave and for emitting it into the vessel wall, and an electronic control and data processing unit (ECDP) for controlling operation of the transducer and for determining the liquid level from a time of flight of the ultrasound wave. The transducer emits the ultrasound wave as a primary Lamb wave into the vessel wall so that a part of the primary Lamb wave leaks into the liquid. The ECDP changes the ultrasonic frequency of the transducer until the transducer receives a reflection of the emitted ultrasound wave in form of a reflection of the pressure wave, determine the corresponding time of flight, and determine the liquid level from the time of flight and from parameters of the ultrasound waves.