Abstract:
A transducer for non-invasive measurement includes: a shear-type piezoelectric element; and a host material. The shear-type piezoelectric element is mounted to a first face of the host material. A second face of the host material is mountable to a wall of a vessel that holds a liquid. When the second face of the host material is mounted to the wall of the vessel, the transducer when activated at an activation frequency launches a Lamb wave into the wall of the vessel. The transducer is designed such that a phase velocity of the Lamb wave in the wall of the vessel is greater than a speed of sound in the liquid held by the vessel.
Abstract:
A method of determining a mixing state of a medium in a container includes: transmitting a plurality of acoustic signals at least partly through the medium and receiving the plurality of acoustic signals after at least partly traversing the medium; determining at least one propagation value of at least one propagation quantity for each of the plurality of received acoustic signals to provide determined propagation values, each at least one propagation quantity being indicative of an interaction of the acoustic signals with the medium; determining at least one fluctuation value of at least one fluctuation quantity based on the determined propagation values to provide a determined at least one fluctuation value, each at least one fluctuation quantity being indicative of and/or correlating with a variance of the determined propagation values and/or with a state of a mixture; and determining the mixing state of the medium.
Abstract:
A system and a method for measuring a signal propagation speed in a liquid contained in a vessel or in a gaseous medium contained in the same vessel above the surface of the liquid are proposed. A transmitter transmits a first signal in a first direction which is at an acute or right angle to a first reflective surface, wherein the first reflective surface reflects the first signal so that it travels in a second direction is received by a first acoustic or electromagnetic receiver. The transmitter transmits a second signal in a predetermined third direction which is at an acute angle to the first direction, where the first or a second reflective surface reflects the second signal so that it travels in a predetermined and angular fourth direction with respect to the first or second reflective surface and is received by the first or a second acoustic or electromagnetic receiver. The speed of sound is then determined under the assumption that both the first and the second signals travel at the same average speed.
Abstract:
An application relates to a system and a method for non-intrusive and continuous level measurement in a cylindrical vessel. The system comprises an ultrasonic transducer for generating an ultrasound wave and for emitting it into the vessel wall, and an electronic control and data processing unit (ECDP) for controlling operation of the transducer and for determining the liquid level from a time of flight of the ultrasound wave. The transducer emits the ultrasound wave as a primary Lamb wave into the vessel wall so that a part of the primary Lamb wave leaks into the liquid. The ECDP changes the ultrasonic frequency of the transducer until the transducer receives a reflection of the emitted ultrasound wave in form of a reflection of the pressure wave, determine the corresponding time of flight, and determine the liquid level from the time of flight and from parameters of the ultrasound waves.
Abstract:
A system and a method for measuring a speed of sound in a liquid contained in a vessel or in a gaseous medium contained in the same vessel above the surface of the liquid. The method comprises: transmitting a first acoustic signal into the vessel to travel inside a first travelling plane. Emitting a second acoustic signal into the wall of the vessel to travel inside the wall of the vessel along a perimeter of the first travelling plane until it is received and obtaining a first time of flight of the first acoustic signal and a second time of flight of the second acoustic signal and obtaining a speed of sound in the vessel wall from a data memory. Determining the speed of sound in the liquid or in the gaseous medium from the length of the travelling path of the first acoustic signal and from the first time of flight.
Abstract:
A system and a method for measuring a signal propagation speed in a liquid contained in a vessel or in a gaseous medium contained in the same vessel above the surface of the liquid are proposed. A transmitter transmits a first signal in a first direction which is at an acute or right angle to a first reflective surface, wherein the first reflective surface reflects the first signal so that it travels in a second direction is received by a first acoustic or electromagnetic receiver. The transmitter transmits a second signal in a predetermined third direction which is at an acute angle to the first direction, where the first or a second reflective surface reflects the second signal so that it travels in a predetermined and angular fourth direction with respect to the first or second reflective surface and is received by the first or a second acoustic or electromagnetic receiver. The speed of sound is then determined under the assumption that both the first and the second signals travel at the same average speed.
Abstract:
A transducer for non-invasive measurement includes: a piezoelectric element; a base plate; and driver electronics. The piezoelectric element is mounted to a first face of the base plate. A second face of the base plate is mountable to a wall of a vessel that holds a liquid. The driver electronics drive the piezoelectric element at a plurality of activation frequencies. When the second face of the base plate is mounted to the wall of the vessel, the transducer when activated excites acoustic waves in the base plate and to launch an acoustic wave into the liquid. The transducer is designed such that an angular divergence of the acoustic wave launched into the liquid varies as a function of at least the activation frequency and a dimension of an emitter.
Abstract:
A method of determining a mixing state of a medium in a container includes: transmitting a plurality of acoustic signals at least partly through the medium and receiving the plurality of acoustic signals after at least partly traversing the medium; determining at least one propagation value of at least one propagation quantity for each of the plurality of received acoustic signals to provide determined propagation values, each at least one propagation quantity being indicative of an interaction of the acoustic signals with the medium; determining at least one fluctuation value of at least one fluctuation quantity based on the determined propagation values to provide a determined at least one fluctuation value, each at least one fluctuation quantity being indicative of and/or correlating with a variance of the determined propagation values and/or with a state of a mixture; and determining the mixing state of the medium.
Abstract:
A transducer for non-invasive measurement includes: at least one first piezoelectric element; a second piezoelectric element; and a base material mountable to a wall of a vessel that contains a liquid. The base material has a planar portion and an angular shaped portion. The angular shaped portion has a plurality of outer faces, a first face of the plurality of outer faces of the angular shaped portion being connected to (or part of) a first face of the planar portion, a second face of the planar portion opposite to the first face of the planar portion being mountable to the wall of the vessel, at least one second face of the plurality of outer faces of the angular shaped portion being angled to the first face of the angular shaped portion at an angle less than an angle of 90 degrees internal to the base material.
Abstract:
An apparatus for measuring a flow velocity of a fluid in a pipe includes: a housing in which a first ultrasonic transducer and a second ultrasonic transducer are arranged at a predefined distance to each other, the first ultrasonic transducer including a first sound transmitting element and a transmitter/receiver unit mounted thereto which emit first ultrasonic pulses at different angles, the second ultrasonic transducer receiving the first ultrasonic pulses and generating a first electronic output signal, the second ultrasonic transducer including a second sound transmitting element and a transmitter/receiver unit mounted thereto which emit second ultrasonic pulses at different angles, the first ultrasonic transducer receiving the second ultrasonic pulses and generating a second electronic output signal; and a control and evaluation unit electrically coupled to the first and second transducers, the control and evaluation unit tuning the first transducer to generate a first electronic output signal of a maximum amplitude.