Abstract:
The invention provides a nonaqueous electrolyte for batteries and a nonaqueous secondary battery using the same which maintains small internal resistance and high electric capacity in high temperature storage. The nonaqueous electrolyte has an electrolyte salt, a compound of general formula (1), and a compound of general formula (2) dissolved in an organic solvent. The ratio of the compound of formula (2) to the sum of the compound of formula (1) and the compound of formula (2) is 0.1 to 8 mass %. In the formulae, R1, R2, R3, and R4 each independently represent C1-C8 alkyl.
Abstract:
The invention provides a nonaqueous electrolyte for batteries and a nonaqueous secondary battery using the same which maintains small internal resistance and high electric capacity in high temperature storage. The nonaqueous electrolyte has an electrolyte salt, a compound of general formula (1), and a compound of general formula (2) dissolved in an organic solvent. The ratio of the compound of formula (2) to the sum of the compound of formula (1) and the compound of formula (2) is 0.1 to 8 mass %. In the formulae, R1, R2, R3, and R4 each independently represent C1-C8 alkyl.
Abstract:
Disclosed is a nonaqueous secondary battery using a positive electrode containing a transition metal and lithium. The battery is prevented from deterioration due to elution of the transition metal from the positive electrode and thereby capable of maintaining small internal resistance and high electrical capacity even after high temperature storage or high-temperature charge and discharge cycles. The battery includes a negative electrode capable of intercalating and deintercalating lithium, a positive electrode containing a transition metal and lithium, and a nonaqueous electrolyte having a lithium salt dissolved in an organic solvent, the nonaqueous electrolyte containing a polycarboxylic ester compound represented by general formula (1) or (2).
Abstract:
Disclosed is a nonaqueous secondary battery using a positive electrode containing a transition metal and lithium. The battery is prevented from deterioration due to elution of the transition metal from the positive electrode and thereby capable of maintaining small internal resistance and high electrical capacity even after high temperature storage or high-temperature charge and discharge cycles. The battery includes a negative electrode capable of intercalating and deintercalating lithium, a positive electrode containing a transition metal and lithium, and a nonaqueous electrolyte having a lithium salt dissolved in an organic solvent, the nonaqueous electrolyte containing a polycarboxylic ester compound represented by general formula (1) or (2).
Abstract:
An electricity storage device maintains low internal resistance and high electric capacity. The nonaqueous-electrolytic-solution hybrid electricity storage device employs an anode into/from which lithium can be intercalated and deintercalated and a cathode including activated carbon, even after high-temperature storage and/or high-temperature charging/discharging. Specifically, this electricity storage device includes an anode into/from which lithium can be intercalated and deintercalated, a cathode that includes activated carbon, and a nonaqueous electrolytic solution, wherein the electricity storage device employs a nonaqueous electrolytic solution that includes at least one type of compound represented by one of general formulas (1) to (5). Details on the general formulas (1) to (5) are as described in the Description.
Abstract:
An electricity storage device maintains low internal resistance and high electric capacity. The nonaqueous-electrolytic-solution hybrid electricity storage device employs an anode into/from which lithium can be intercalated and deintercalated and a cathode including activated carbon, even after high-temperature storage and/or high-temperature charging/discharging. Specifically, this electricity storage device includes an anode into/from which lithium can be intercalated and deintercalated, a cathode that includes activated carbon, and a nonaqueous electrolytic solution, wherein the electricity storage device employs a nonaqueous electrolytic solution that includes at least one type of compound represented by one of general formulas (1) to (5). Details on the general formulas (1) to (5) are as described in the Description.