Abstract:
A brake operation unit includes, for example, a master cylinder that movably houses a piston moving in connection with an operation member; an electric discharging unit including a motor and a discharging mechanism that is caused to discharge a working fluid by operation of the motor; and a reaction force applying mechanism that applies a reaction force to the operation member. A second central axis of the motor is separated from a first central axis of the master cylinder, and intersects a direction parallel to the first central axis. When viewed in a direction parallel to the second central axis, the first central axis is located between the second central axis and the reaction force applying mechanism.
Abstract:
A braking device for a vehicle is provided which includes a hydraulic booster to make wheels of the vehicle produce frictional braking force. The hydraulic booster includes a fluid chamber and a throttle. When a brake pedal is depressed suddenly, the throttle works to obstruct or restrict an outflow of brake fluid from the fluid chamber, thereby increasing the pressure in the fluid chamber. This causes the pressure in a master chamber of the hydraulic booster to rise, thereby producing the frictional braking force almost no later than start of the depression of the brake pedal.
Abstract:
An increase in startup current supplied to a motor is suppressed at an initial stage of starting automatic braking control, while current supply to the motor is performed in a fully energized state after the automatic braking control is started. While output of the motor is increased by controlling the motor in the fully energized state so that a high braking force with high responsiveness is obtained, startup current is prevented from becoming excessive by performing high frequency control only at startup. Thus, decrease in battery voltage is minimized and thus the occurrence of malfunction is minimized in the control systems of various electrical components used in the vehicle.
Abstract:
A braking device for a vehicle is provided which includes a power fail-safe mechanism which works to create frictional braking force at a wheel of the vehicle in the event of loss of electric power. The braking device is equipped with an electromagnetic valve which is of a normally closed type. In the event of loss of electric power in the braking system, the electromagnetic valve is closed to block fluid communication between a hydraulic booster and a brake fluid reservoir, so that a stroke chamber in the hydraulic booster is hermetically closed. This enables the pressure in a master cylinder to rise in response to depression of a brake pedal to develop the frictional braking force.
Abstract:
A braking device for a vehicle is provided which is equipped with a hydraulic booster. The hydraulic booster includes a master cylinder, a braking simulator, and an input piston. The input piston is disposed in the master cylinder in connection with a brake actuating member such as a brake pedal and is moved in response to a braking effort applied to the brake actuating member to drive a spool valve which switches among a pressure-reducing mode, a pressure-increasing mode, and a pressure-holding mode. The braking simulator works to urge the input piston rearward and is disposed inside a cylindrical cavity of the master cylinder of the hydraulic booster. This layout improves the mountability of the braking device in vehicles.
Abstract:
A vibration absorbing apparatus is provided which includes a vibration absorbing mechanism equipped with a spring mechanism and an elastic member. The elastic member is made of a non-metallic material and of a cylindrical shape. The elastic member is arranged coaxially with the spring mechanism and has a spring constant in a radial direction thereof which is lower than that in an axial direction thereof. The spring mechanism works to absorb vibration applied thereto in the axial direction thereof. The elastic member works to absorb vibration applied thereto in the radial direction thereof.