Abstract:
Microfluidic system including a droplet actuator having an interior cavity and a series of electrodes arranged along the interior cavity for forming a droplet-operation path therethrough. The droplet actuator has a module-engaging side including an opening that is in flow communication with the interior cavity. The microfluidic system also includes a reservoir module configured to be coupled to the droplet actuator. The reservoir module includes a plurality of liquid compartments having respective outlets and at least one seal positioned along the outlets to retain liquid within the liquid compartments. The reservoir module is movable along the module-engaging side of the droplet actuator to position the outlets relative to the opening. The microfluidic system also includes a piercer having a tip configured to penetrate the seal thereby permitting the liquid within the corresponding liquid compartment to flow into the opening.
Abstract:
Methods of concentrating beads in a droplet and/or loading beads on a fluidic device are provided, including among other things, a method of concentrating beads in a droplet, the method comprising: (a) providing a droplet actuator comprising: (i) an interior droplet operations volume; and (ii) a reservoir exterior to the interior volume; (iii) a droplet established in a liquid path extending from the reservoir into the interior volume; (b) providing magnetically responsive beads in the portion of the droplet which is in the reservoir; (c) magnetically attracting the magnetically responsive beads through the liquid path into the portion of the droplet which is in the interior volume; and (d) forming a droplet comprising one or more of the magnetically responsive beads in the interior volume.