Abstract:
A refrigerant system is provided with a pulse width modulation suction valve and a second valve on a line that bypasses the pulse width modulation suction valve. This second valve has a variable opening. In this manner, the pressure within the compressor shell is maintained at the lowest possible level regardless of the system operating conditions, when the pulse width modulation suction valve is cycled to a closed position. Further, the second valve can continue providing capacity control, should the pulse width modulation suction valve fail.
Abstract:
A multi-rotor screw compressor includes a housing, a sun rotor, and first and second planet rotors. The first planet rotor intermeshes with the sun rotor to define a first compression pair. The second planet rotor intermeshes with the sun rotor to define a second compression pair. The first and second compression pairs are rotatably mounted in the housing. The housing includes a first port, a portion of which is in communication with the first compression pair, and a second port, a portion of which is in communication with the second compression pair. The portions of the first and second ports which communicate with the first and second compression pairs have a different geometry for offsetting pulsations in a working fluid flowing through the ports.
Abstract:
A refrigerant system is provided that includes a compressor, a motor for driving the compressor, a refrigerant system component, and a controller. The refrigerant system component can operate in a pulse width modulated mode having a loaded phase and an unloaded phase. The compressor motor is loaded in the loaded phase but unloaded in the unloaded phase. The controller applies a first voltage to the compressor motor in the loaded phase and a second voltage to the compressor motor in the unloaded phase. Here, the second voltage is less than the first voltage.
Abstract:
A refrigerant system is provided with at least two stages of compression connected in series. An intercooler is positioned intermediate the two stages and is cooled by an indoor air stream. The intercooler is positioned to be in a path of air flow passing over an indoor heat exchanger, and preferably downstream of the indoor heat exchanger, in relation to this airflow. The intercooler cools the refrigerant flowing between the two compression stages as well as provides the reheat function. Benefits with regard to system performance (efficiency, capacity and reliability) are achieved with no additional circuitry or components required to provide the intercooler and reheat functions. This invention is particularly important for the CO2 refrigerant systems operating in the transcritical cycle. Methods of control are presented for both the intercooler and reheat functions.
Abstract:
Various control methods are disclosed for removing moisture from the external surfaces of an evaporator in a refrigerant system to avoid moisture entering a conditioned space. In one embodiment, the evaporator fan is driven in a reverse direction, and the air is guided to the outdoor environment. In other embodiments, a supplemental exhaust fan is utilized in conjunction with the evaporator fan. Also, a reheat circuit, hot gas bypass circuit, or specific features of a heat pump unit may be utilized to more efficiently perform the moisture removal.
Abstract:
A refrigerant system capable of operating at multiple capacity modes includes an evaporator, a multi-stage compressor assembly, a first fluid flow path, a second fluid flow path, a first valve, and a second valve. The multi-stage compressor assembly has a first stage and a second stage. The first fluid flow path extends from the evaporator to the first stage of the multi-stage compressor assembly. The second fluid flow path connects to the first fluid flow path and to the multi-stage compressor assembly between the first stage and the second stage.
Abstract:
A refrigerant system (10, 100, 200) is provided with a power control system (30, 130, 230). The power control system adjusts the speed of the motors driving the refrigerant system components such as a compressor, a fan or a pump via a variable speed device (75, 175, 275) or bypasses the variable speed device (75, 175, 275) for normal operating speeds. A single power control system may be provided for the entire refrigerant system or each component may be independently controlled.
Abstract:
A pulse width modulation control is provided for a suction modulation valve in a refrigerant system. An intentional small “leakage” path is maintained through the suction modulation valve to ensure that the pressure inside the compressor shell does not decrease below a safe reliability threshold but, at the same time, does not exceed a certain value, which would cause the refrigerant system to operate inefficiently, when the pulse width modulation control has moved the suction modulation valve to a closed position. The size of this minimum “leakage” path is continuously adjusted to ensure that the optimum pressure inside the compressor shell is maintained regardless of the evaporator pressure and other operating conditions.
Abstract:
A method and system for operating a refrigerant system having a reciprocating compressor with a main cylinder module and an economizer cylinder module includes regulating a flow of refrigerant into the main cylinder module and regulating a flow of refrigerant into the economizer cylinder module. The main cylinder module and the economizer cylinder module have separate inlet and outlet discharge streams. The flow through each module is regulated as a function of an operating mode of the refrigerant system, which includes various modes of loading and unloading based, in part, on a cooling demand. In some embodiments, the refrigerant system may include a connector refrigerant line configured to redirect refrigerant from the economizer cylinder module to the main cylinder module or from the main cylinder module to the economizer cylinder module.
Abstract:
The present disclosure provides a refrigerant system that comprises a compressor, a main refrigerant circuit, an economizer refrigerant circuit, and a bypass refrigerant circuit. The refrigerant system further comprises a single refrigerant flow control device switching between different operational modes to provide various degree of system unloading in operation. The present disclosure also provides a method of operating the refrigerant system.