Abstract:
A touch screen is disclosed. A plurality of common electrodes can be configured to operate as display circuitry during a display phase, and to operate as touch sensing circuitry during a touch sensing phase. The plurality of common electrodes can include a first common electrode associated with a first display pixel, and a second common electrode associated with a second display pixel. Circuitry can be configured to update the first display pixel at a first time while driving the first common electrode but not the second common electrode, and update the second display pixel at a second time, after the first time, while driving the second common electrode but not the first common electrode. In some examples, the circuitry can be configured to leave the second common electrode floating while driving the first common electrode, and leave the first common electrode floating while driving the second common electrode.
Abstract:
This application relates to methods and apparatus to refresh a display device at various frequencies. Specifically, multiple areas of the display device may be refreshed concurrently at different frequencies. In this way, when static content is being displayed in certain areas of the display device, those certain areas can be refreshed at a lower rate than areas displaying dynamic content such as video or animation. By refreshing at lower rates, the energy consumed by the display device and subsystems associated with the display device can be reduced. Additionally, processes for reducing flicker when refreshing the display device at different refresh rates are disclosed herein.
Abstract:
A display device may include a display having a plurality of pixels. The display device may also include a replica pixel circuit having a switching device configured to output a first current based on a received voltage, a light-emitting diode (LED) configured to illuminate to a first gray level based on the first current output by the switching device, and current mirror circuitry configured to generate a second current that mirrors the first current. In addition, the replica pixel circuit may include a current source configured to output a reference current based on a voltage value that corresponds to the received voltage, comparator circuitry configured to determine a difference between the second current and the reference current, and voltage adjustment circuitry configured to adjust a source voltage output provided to the plurality of pixels based on the difference.
Abstract:
An apparatus is disclosed. In some examples, the apparatus comprises a display panel comprising a plurality of display pixels. In some examples, the apparatus comprises a plurality of temperature sensors disposed at different portions the display panel, wherein the plurality of temperature sensors comprise ratioed pairs of thin film transistors and the ratioed pairs of thin film transistors are formed on the display panel. In some examples, the apparatus comprises control circuitry for changing illumination properties of the plurality of display pixels based on changes is temperature detected by a proximate temperature sensor of the plurality of temperature sensors. In some examples, the ratioed pairs of thin film transistors are operated in a sub-threshold mode.
Abstract:
A display device may include a source line that provides a data line signal to a pixel of the display device, a gate line that provides a gate signal to a switches associated with the pixel, and a voltage gate line disposed parallel to the source line and coupled to the gate line at a cross point node. The display device may also include a driver circuit that receives a pixel value to provide to the pixel, determines a compensation amount for the pixel value based on an expected kickback voltage present on the pixel due to a coupling effect between the source line and the voltage gate line, generates a compensated data line signal based on the compensation value and the pixel value, and provides the compensated data line signal to the pixel via the source line.
Abstract:
A system is disclosed. The system can comprise drive circuitry included in a first component of the system, the drive circuitry configured to drive a first touch electrode on a touch sensor panel. The system can also comprise a driving line configured to couple an output of the drive circuitry to the first touch electrode. The system can also comprise a feedback line configured to couple the output of the drive circuitry to an input of the drive circuitry, wherein a first end of the feedback line is coupled to the input of the drive circuitry at the first component, and a second end of the feedback line is configured to be coupled to the output of the drive circuitry at a second component, different from the first component, of the system.
Abstract:
This application relates to methods and apparatus for refreshing a display device at various frequencies. Specifically, multiple areas of the display device can be refreshed concurrently at different frequencies. In this way, when static content is being displayed in certain areas of the display device, those certain areas can be refreshed at a lower rate than areas displaying dynamic content such as video or animation. By refreshing at lower rates, the energy consumed by the display device and subsystems associated with the display device can be reduced. Additionally, processes for reducing flicker when refreshing the display device at different refresh rates are disclosed herein.
Abstract:
This application relates to methods and apparatus for refreshing a display device at various frequencies. Specifically, multiple areas of the display device can be refreshed concurrently at different frequencies. In this way, when static content is being displayed in certain areas of the display device, those certain areas can be refreshed at a lower rate than areas displaying dynamic content such as video or animation. By refreshing at lower rates, the energy consumed by the display device and subsystems associated with the display device can be reduced. Additionally, processes for reducing flicker when refreshing the display device at different refresh rates are disclosed herein.
Abstract:
This application relates to performing certain dithering processes to eliminate display artifacts such as flicker, which can be caused by charge accumulation at the display. The dither process can be performed by a display controller that uses a group lookup method for identifying groups of dithering patterns that can be combined to expand a number of color values available to the display. The dither process can also be performed as a temporal process that incorporates groups of dithering patterns into frames and shifts a spatial arrangement of the groups of dithering patterns over a sequence of frames. Additionally, the dither process can incorporate counters that count the number of times a particular spatial arrangement of dithering patterns has been used in a sequence of frames in order that each spatial arrangement of dithering patterns will share an average count with other spatial arrangements over a sequence of frames.
Abstract:
This application relates to systems, methods, and apparatus for compensating voltage for pixels of a display panel based on the location of the pixels within the display panel. An amount of voltage compensation is assigned to each pixel or a group of pixels within the display panel in accordance with a calibration of the display panel. During operation of the display panel, pixel data is generated for a location of the display panel, and the pixel data is modified according to the amount of voltage compensation corresponding to the location. By modifying the pixel data in this way, spatial variations in voltage across the display panel can be mitigated in order to reduce the occurrence of certain display artifacts at the display panel.