Abstract:
In some embodiments, a microelectromechanical system may include a semiconductor substrate, a plurality of wiring layers, and a stop. The plurality of wiring layers may be coupled to a first surface of the semiconductor substrate. The stop may be coupled to the plurality of wiring layers. In some embodiments, at least a portion of the plurality of wiring layers between the stop and the first surface of the substrate comprises an insulating material. In some embodiments, at least the portion excludes wiring within. In some embodiments, a volume of the portion may be determined by a use of the microelectromechanical system. In some embodiments, the portion may inhibit, during use, electrical failures adjacent to the stop.
Abstract:
A sensor includes a sensor array formed on a first side of a substrate and at least one circuit operative to communicate with the sensor array formed on a second side of the substrate. At least one via extends through the substrate to electrically connect the sensor array to the at least one circuit. Placing the at least one circuit on the second side of the substrate allows the sensor array to occupy substantially all of the first side of the substrate.
Abstract:
A sensor includes a sensor array formed on a first side of a substrate and at least one circuit operative to communicate with the sensor array formed on a second side of the substrate. At least one via extends through the substrate to electrically connect the sensor array to the at least one circuit. Placing the at least one circuit on the second side of the substrate allows the sensor array to occupy substantially all of the first side of the substrate.
Abstract:
Embodiments of the present disclosure provide an optical encoder for an electronic device. The optical encoder includes a spindle and an encoded pattern disposed around a circumference of the spindle. The encoded pattern may include one or more surface features that create a direction-dependent reflective region.
Abstract:
A sensor includes a sensor array formed on a first side of a substrate and at least one circuit operative to communicate with the sensor array formed on a second side of the substrate. At least one via extends through the substrate to electrically connect the sensor array to the at least one circuit. Placing the at least one circuit on the second side of the substrate allows the sensor array to occupy substantially all of the first side of the substrate.
Abstract:
A sensor includes a sensor array formed on a first side of a substrate and at least one circuit operative to communicate with the sensor array formed on a second side of the substrate. At least one via extends through the substrate to electrically connect the sensor array to the at least one circuit. Placing the at least one circuit on the second side of the substrate allows the sensor array to occupy substantially all of the first side of the substrate.
Abstract:
In some embodiments, a microelectromechanical system may include a semiconductor substrate, a plurality of wiring layers, and a stop. The plurality of wiring layers may be coupled to a first surface of the semiconductor substrate. The stop may be coupled to the plurality of wiring layers. In some embodiments, at least a portion of the plurality of wiring layers between the stop and the first surface of the substrate comprises an insulating material. In some embodiments, at least the portion excludes wiring within. In some embodiments, a volume of the portion may be determined by a use of the microelectromechanical system. In some embodiments, the portion may inhibit, during use, electrical failures adjacent to the stop.
Abstract:
Embodiments of the present disclosure provide an optical encoder for an electronic device. The optical encoder includes a spindle and an encoded pattern disposed around a circumference of the spindle. The encoded pattern may include one or more surface features that create a direction-dependent reflective region.
Abstract:
Embodiments of the present disclosure provide an optical encoder for an electronic device. The optical encoder includes a spindle and an encoded pattern disposed around a circumference of the spindle. The encoded pattern may include one or more surface features that create a direction-dependent reflective region.
Abstract:
In some embodiments, a microelectromechanical system may include a semiconductor substrate, a plurality of wiring layers, and a stop. The plurality of wiring layers may be coupled to a first surface of the semiconductor substrate. The stop may be coupled to the plurality of wiring layers. In some embodiments, at least a portion of the plurality of wiring layers between the stop and the first surface of the substrate comprises an insulating material. In some embodiments, at least the portion excludes wiring within. In some embodiments, a volume of the portion may be determined by a use of the microelectromechanical system. In some embodiments, the portion may inhibit, during use, electrical failures adjacent to the stop.