Abstract:
Compounds comprising one or more functionalized fatty acid esters, which may be derived from bio-based oils, are used as a low-VOC coalescent agent (i.e., a coalescent agent having a low content of volatile organic compounds) in waterborne coating compositions. The functional group can be epoxide, vicinal diol, hydroxy phosphotriester, hydroxy ester, hydroxyl alkyl ester, hydroxyl benzyl ester, hydroxy ether, hydroxy amino, hydroxy sulfide, hydroxy nitrile, hydroxy amine, terminal alcohol, thiiran, ketone, or cyclic carbonate. The present disclosure also relates to waterborne coating compositions comprising these functionalized fatty acid esters.
Abstract:
Polymer latex binders useful for preparing coating compositions containing low levels of, or which are substantially free of, volatile organic compounds (VOCs) such as volatile freeze-thaw additives are prepared by multistage emulsion polymerization, wherein one stage provides a copolymer having a relatively high glass transition temperature and containing an oxyalkylene-containing (meth)acrylate comonomer.
Abstract:
Polymer latex binders useful for preparing coating compositions containing low levels of, or which are substantially free of, volatile organic compounds (VOCs) such as volatile freeze-thaw additives are prepared by multistage emulsion polymerization, wherein one stage provides a copolymer having a relatively high glass transition temperature and containing an oxyalkylene-containing (meth)acrylate comonomer.
Abstract:
The aqueous, substantially volatile organic compound (VOC)-free coating compositions of the invention include an acrylic latex and a vinyl acetate-ethylene latex including from about 10 to about 90 weight percent of a vinyl acetate-ethylene polymer, based on total weight of acrylic polymer and vinyl acetate-ethylene polymer, having a Tg from about −20 to about 20 degrees Celsius; and from about 10 to about 90 weight percent of an acrylic polymer, based on the total weight of acrylic polymer and vinyl acetate-ethylene polymer, the acrylic polymer comprising, in polymerized form, at least one ethylenically unsaturated (meth)acrylic monomer and from about 0.01 to about 10 weight percent, based on total weight of the acrylic polymer, of an acetoacetate moiety containing monomer, where the acrylic polymer has a Tg of from about −20 to about 20 degrees Celsius.
Abstract:
Polymer latex binders useful for preparing coating compositions containing low levels of, or which are substantially free of, volatile organic compounds (VOCs) such as volatile freeze-thaw additives are prepared by multistage emulsion polymerization, wherein one stage provides a copolymer having a relatively high glass transition temperature and containing an oxyalkylene-containing (meth)acrylate comonomer.
Abstract:
Embodiments include coating compositions, methods of coating a substrate, and substrates having at least one surface coated according to the methods of the present disclosure. The aqueous, substantially volatile organic compound (VOC)-free coating compositions includes an acrylic latex and a vinyl acetate-ethylene latex including from about 10 to about 90 weight percent of a vinyl acetate-ethylene polymer, based on total weight of acrylic polymer and vinyl acetate-ethylene polymer, having a Tg from about −20 to about 20 degrees Celsius; and from about 10 to about 90 weight percent of an acrylic polymer, based on the total weight of acrylic polymer and vinyl acetate-ethylene polymer, the acrylic polymer comprising, in polymerized form, at least one ethylenically unsaturated (meth)acrylic monomer and from about 0.01 to about 10 weight percent, based on total weight of the acrylic polymer, of an acetoacetate moiety containing monomer, where the acrylic polymer has a Tg of from about −20 to about 20 degrees Celsius.
Abstract:
Polymer latex binders useful for preparing coating compositions containing low levels of, or which are substantially free of, volatile organic compounds (VOCs) such as volatile freeze-thaw additives are prepared by multistage emulsion polymerization, wherein one stage provides a copolymer having a relatively high glass transition temperature and containing an oxyalkylene-containing (meth)acrylate comonomer.