Abstract:
The invention relates to a process for oligomerising light olefins in which the effluent from the oligomerisation section is passed to a prefractionator that leads to at least one head fraction containing a mixture of liquefied petroleum gas and light gasoline and a bottom fraction containing a mixture of heavy gasoline and middle distillate, the said head fraction being passed to a debutaniser that leads to at least one liquefied petroleum gas cut and a light gasoline cut, the said bottom fraction and at least part of the said light gasoline cut being passed to a separator enabling at least a gaseous fraction, a gasoline fraction and a gasoil fraction to be obtained.
Abstract:
The present invention describes a process for the production of high octane number gasoline by isomerization of a light naphtha cut, comprising two separation steps located downstream of the reaction step which can be used to improve the energy efficiency of said process.
Abstract:
The present invention relates to a process for producing high-purity para-xylene, comprising a single step of separation by adsorption in an SMB, with a subsequent step of separation by distillation in a first three-fraction distillation column producing at least two raffinates and optionally of two isomerization steps, making it possible to improve the overall para-xylene yield of the aromatic loop and to minimize the economic impact.
Abstract:
The present invention relates to a method for recovering heat available at low temperature in a process and its use in order to reduce the energy consumption of the said process. Application of the method to an aromatics complex in which the low-temperature heat is recovered at the head of distillation columns in the form of low-pressure steam and is reused to reboil other distillation columns in which the operating pressure has possibly been lowered.
Abstract:
The present invention describes a process for obtaining para-xylene from a feedstock containing xylenes, ethylbenzene and C9+ hydrocarbons, said process comprising a single stage A of separation in a simulated moving bed carried out with a zeolite as adsorbent and a desorbent and making it possible to obtain at least three fractions, a fraction A1 comprising a mixture of para-xylene and of desorbent and two fractions A21, A22 comprising ethylbenzene (EB), ortho-xylene (OX) and meta-xylene (MX) and desorbent, said stage is carried out at a temperature between 20° C. and 250° C., under a pressure between the bubble pressure of the xylenes at the operating temperature and 2.0 MPa, and with a ratio by volume of the desorbent to the feedstock in the unit for separation 2 in a simulated moving bed is between 0.4 and 2.5, a stage B of fractionation by distillation in a 2-cut distillation column of the fractions A21 and A22 resulting from stage A, in which said fractions are introduced separately at distinct injection points, and makes it possible to obtain a fraction B2 containing ethylbenzene, ortho-xylene and meta-xylene, and a fraction B42 devoid of aromatic compounds having 8 carbon atoms and containing desorbent.
Abstract:
The present invention relates to a process and to a device for the separation of a feedstock comprising benzene, toluene and C8+ compounds, in which: a toluene column (C10) is fed directly with a C7+ cut resulting from the bottom of a stabilization column (C11) positioned downstream of a transalkylation unit (P4); a C7− cut is withdrawn at the top of the toluene column (C10) and a C8+ cut is withdrawn at the bottom; a benzene column (C9) is fed with the C7− cut resulting from the toluene column (C10); an essentially aromatic cut resulting from an aromatics extraction unit (P1) is injected into the toluene column (C10) separately above the feeding of the C7+ cut or into the benzene column (C9).
Abstract:
The present invention describes a process for the isomerization of a light naphtha with a view to forming high octane number gasolines, said process using a deisopentanizer and a deisohexanizer which are thermally integrated in a manner such as to reduce the consumption of the high temperature utilities employed in the process.
Abstract:
A process for the isomerization of a feed of hydrocarbon compounds containing C5 and/or C6 hydrocarbon compounds, in which process: a) an isomerization unit (1) is supplied with at least one liquid fraction of the feed of hydrocarbon compounds and the isomerization is carried out in the presence of a chlorinated catalyst; b) a stabilization unit (20) containing at least one stabilization column (2) is supplied with the effluent obtained from the isomerization unit (1) and a separation is carried out in the stabilization unit (20); c) an absorption unit (7) contains at least one absorption column (3); d) a liquid flow enriched in chlorinated compounds is extracted from the absorption unit (7) and returned to the isomerization unit (1); e) the liquid flow containing at least one isomerate of the feed of hydrocarbon compounds is extracted from the stabilization unit (20).