摘要:
According to one or more other aspects of the present disclosure, a system for reforming a liquid hydrocarbon fuel includes a mixing zone with a fuel intake fluidly coupled to a liquid hydrocarbon fuel source and an oxygen-containing gas intake fluidly coupled to an oxygen-containing gas source. The mixing zone further includes at least one atomizing nozzle and a fuel distribution zone downstream the at least on atomizing nozzle. The system also includes a catalyst reaction zone downstream the mixing zone, including a monolith block having a plurality of flow channels defined by monolith walls and a reforming catalyst coated onto the monolith walls. The atomizing nozzle generates a plurality of droplets comprising the liquid hydrocarbon fuel suspended in oxygen-containing gas. The fuel distribution zone distributes the plurality of droplets to each of the plurality of flow channels to contact the reforming catalyst including N-hydroxyphthalimide.
摘要:
The present disclosure relates to methods for the production of a renewable crude oil from plant oils and animal fats. The renewable crude is a drop-in renewable crude that can be processed in a petroleum refinery with minimal or no modifications.
摘要:
An integrated refinery process for producing diesel fuel blending stock from olefinic heavy naphtha streams that contain gasoline and compounds with carbon numbers in the range of from 9-14 are oxidized and converted into their corresponding oxides in the presence of a homogeneous or heterogeneous catalyst, or both, and optionally an acid phase transfer agent for the liquid reactants, the product oxides having boiling points about 34° C. higher than the corresponding olefins, and as a result, in the diesel blending component boiling point range. The oxygenates produced have lubricating properties that enhance the typically poor lubricity characteristics of ultra-low sulfur diesels and reduce the need for additives to improve the lubricity of the blended diesel fuels.
摘要:
An integrated refinery process for producing diesel fuel blending stock from olefinic heavy naphtha streams that contain gasoline and compounds with carbon numbers in the range of from 9-14 are oxidized and converted into their corresponding oxides in the presence of a homogeneous or heterogeneous catalyst, or both, and optionally an acid phase transfer agent for the liquid reactants, the product oxides having boiling points about 34° C. higher than the corresponding olefins, and as a result, in the diesel blending component boiling point range. The oxygenates produced have lubricating properties that enhance the typically poor lubricity characteristics of ultra-low sulfur diesels and reduce the need for additives to improve the lubricity of the blended diesel fuels.
摘要:
Processes and systems for the conversion of hydrocarbons herein may include separating an effluent from a moving bed reactor, the effluent including reaction product, first particulate catalyst, and second particulate catalyst. The separating may recover a first stream including the reaction product and first particulate catalyst and a second stream including second particulate catalyst. The second stream may be admixed with a regenerated catalyst stream including both first and second particulate catalyst at an elevated temperature. The admixing may produce a mixed catalyst at a relatively uniform temperature less than the elevated regenerated catalyst temperature, where the temperature is more advantageous for contacting light naphtha and heavy naphtha within the moving bed reactor to produce the effluent including the reaction product, the first particulate catalyst, and the second particulate catalyst.
摘要:
Processes for partially deoxygenating a biomass-derived pyrolysis oil to produce a fuel for a burner are disclosed. A biomass-derived pyrolysis oil stream is combined with a low recycle stream that is a portion of a deoxygenated effluent to form a heated diluted py-oil feed stream, which is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form the effluent stream. The effluent may be separated and used to provide a product fuel stream for a burner.
摘要:
The present invention describes a process for the production of high octane number gasoline by isomerization of a light naphtha cut, comprising two separation steps located downstream of the reaction step which can be used to improve the energy efficiency of said process.
摘要:
Processes for combining the stripping sections for two different reaction zones, such as a diesel hydrotreating zone and a naphtha hydrotreating zone. The stripping section includes an air cooler, a combined overhead receiver and two different separation sections. The two separation sections may be in the same column, but be fluidically separated. Alternatively the two sections may be in different columns. A stream from the second section may be used as a reflux from the first. While a stream from the combined overhead condenser may provide a reflux for the first section.
摘要:
This invention relates to process for producing a reformate or gasoline product. The process involves a rapid cycle of reacting hydrocarbon feedstock to form the product and then regenerating the catalyst used in the reaction. The process can be carried out at relatively high liquid hourly space velocities and preferably at relatively low hydrogen to hydrocarbon ratios to produce a reformed product having relatively high liquid yield and hydrogen content.
摘要:
The economics and thermal efficiency of an olefin-to-gasoline-conversion process utilizing catalyst beds is improved by separating the effluent product from the beds into a gas in a liquid phase, cooling the gas phase to form additional liquid and heat exchanging the liquid with the overhead gas from the separator.