Abstract:
A process for increasing the yields of light olefins and the yields of aromatics from a hydrocarbon stream is presented. The process includes a first separation to direct the light components that are not reformable to a cracking unit, with the remainder passed to a second separation unit. The second separation unit extracts normal components from the hydrocarbon stream to pass to the cracking unit. The resulting hydrocarbon stream with reduced light ends and reduced normals is passed to a reforming unit.
Abstract:
A process for increasing the yields of hydrocarbon components to gasoline blending pools from a hydrocarbon feedstock is presented. The process includes separating a naphtha feedstock to components to a first stream that are more readily processed in a cracking unit and to components in a second stream that are more readily processed in a reforming unit.The process includes the ability to convert components from the cracking stream to the reforming stream.
Abstract:
The present invention relates to a process and to a device for the separation of a feedstock comprising benzene, toluene and C8+ compounds, in which: a toluene column (C10) is fed directly with a C7+ cut resulting from the bottom of a stabilization column (C11) positioned downstream of a transalkylation unit (P4); a C7− cut is withdrawn at the top of the toluene column (C10) and a C8+ cut is withdrawn at the bottom; a benzene column (C9) is fed with the C7− cut resulting from the toluene column (C10); an essentially aromatic cut resulting from an aromatics extraction unit (P1) is injected into the toluene column (C10) separately above the feeding of the C7+ cut or into the benzene column (C9).
Abstract:
HIGH OCTANE GASOLINE IS PRODUCED BY ISOMERIZING A C4 THROUGH C6 PARAFFIN FRACTION FROM A STRIAGHT RUN GASOLINE, THE HIGHER BOILING PORTION OF THE STRAIGHT RUN GASOLINE IS PASSED INTO A REFORMING ZONE. THE EFFLUENT FROM THE ISOMERIZATION ZONE IS PASSED INTO A MOLECULAR SIEVE SEPARATION ZONE WHICH SEPARATES NORMAL PARAFFINS FROM NON-NORMALS SUCH AS AROMATICS AND ISO-PARAFFINS. A PORTION OF THE EXTRACTED NORMAL PARAFFINS ARE THEN RECYCLED TO THE ISOMERIZATION ZONE TO EFFECT FURTHER PRODUCTION OF BRANCHED CHAIN PARAFFINS. THE RAFFINATE MATERIAL RECOVERED FROM THE MOLECULAR SIEVE SEPARATION ZONE IS SUFFICIENTLY HIGH IN OCTANE NUMBER TO BE UTILIZED AS A CLEAR GASOLINE. THE REFORMING AND ISOMERIZATION ZONE EFFECT THE CONVERSION OF THE RESPECTIVE FEED TO THOSE ZONES THROUGH THE USE OF SUITABLE CATALYTIC COMPONENTS. THE SEPARATION ZONE
UTILIZES A TYPE A CRYSTALLINE ALUMINOSILICATE TO SELECTIVELY EXTRACT NORMAL PARAFFINS FROM A FEED CONTAINING NORMAL PARAFFINS AND OTHER NON-NORMAL COMPONENTS.
Abstract:
A process for producing transport fuel blendstocks comprises providing a first feedstock comprising butane and propane and a second feedstock comprising benzene and dehydrogenating the first feedstock in a first reactor to produce a C4 product comprising butane and butene and a C3 product comprising propane and propylene. The process also comprises oligomerizing the C4 product in a second reactor to produce a first transport fuel blendstock and alkylating the C3 product with the second feedstock in a third reactor to produce a second transport fuel blendstock.
Abstract:
An improved aromatics extraction process is disclosed. Key feature of the present invention is use of the fractionator in the hydrodealkylation unit or other unit with a benzene fraction to fractionate not only hydrodealkylated benzene but also extracted benzene. The extracted benzene is used as "pseudo" reflux in the hydrodealkylation unit fractionator, thereby reducing the reflux requirement. The conventional re-run fractionator for clay treated benzene extract is eliminated, since polymerized olefins in this extract are removed as a bottoms fraction from the hydrodealkylation fractionator.
Abstract:
The present invention relates to a process and to a device for the separation of a feedstock comprising benzene, toluene and C8+ compounds, in which: a toluene column (C10) is fed directly with a C7+ cut resulting from the bottom of a stabilization column (C11) positioned downstream of a transalkylation unit (P4); a C7− cut is withdrawn at the top of the toluene column (C10) and a C8+ cut is withdrawn at the bottom; a benzene column (C9) is fed with the C7− cut resulting from the toluene column (C10); an essentially aromatic cut resulting from an aromatics extraction unit (P1) is injected into the toluene column (C10) separately above the feeding of the C7+ cut or into the benzene column (C9).
Abstract:
A process for producing transport fuel blendstocks comprises providing a first feedstock comprising butane and propane and a second feedstock comprising benzene and dehydrogenating the first feedstock in a first reactor to produce a C4 product comprising butane and butene and a C3 product comprising propane and propylene. The process also comprises oligomerizing the C4 product in a second reactor to produce a first transport fuel blendstock and alkylating the C3 product with the second feedstock in a third reactor to produce a second transport fuel blendstock.
Abstract:
The present invention provides a process for deep desulphurization of cracked gasoline with minimum octane loss of about 1-2 units. In this process full range cracked gasoline from FCC, Coker, Visbreaker etc is sent to Diolefin Saturation Reactor for selective saturation of diolefins. After saturation of diolefins, the stream is sent to Splitter for splitting into three cuts i.e Light Cut (IBP-70° C.), Intermediate Cut (70-90° C.) and Heavy Cut (90-210° C.). The Light Cut which contains majority of the high octane olefins and mercaptan sulfur is desulfurized with caustic treatment using Continuous Film Contactor (CFC). The sulfur in the Intermediate Cut is also predominantly mercaptans and the cut can be desulfurized by caustic treatment using CFC along with Light cut or separately desulfurized before being sent for isomerization. The Heavy Cut containing mainly thiophinic sulfur compounds is treated either by using conventional HDS process or reactive adsorption process.