Abstract:
A polyurethane dispersion PUD comprises at least one polyurethane P based on at least one polyisocyanate and at least one polyester polyol PES, wherein the polyester polyol PES is based on at least one polyhydric alcohol A and at least one dicarboxylic acid D, wherein at least one polyhydric alcohol A and/or at least one dicarboxylic acid D were at least partly derived from renewable raw materials.
Abstract:
The present invention relates to a process for producing a polyurethane, comprising at least the following steps (A) bringing at least one polymer polyol into contact with an amount of from 0.1 to 20 mol %, based on the entire amount of polyisocyanate, of at least one first polyisocyanate, in order to obtain a prepolymer which in essence has terminal hydroxy groups, and (B) bringing the prepolymer from step (A) into contact with at least one second polyisocyanate and optionally with further additives, in order to obtain the polyurethane, to a polyurethane obtainable via said process, and also to the use of this polyurethane as cladding in automobiles, coatings, cables, plug connectors, solar modules, foils, moldings, shoe soles and shoe components, balls and ball components, rollers, fibers, profiles, laminates and wiper blades, hoses, cable plugs, bellows, drag cables, cable sheathing, gaskets, nonwoven fabrics, drive belts, or damping elements.
Abstract:
The present invention relates to a thermoplastic polyurethane (TPU-1) obtained or obtainable by reaction of an isocyanate composition (IZ) comprising MDI with a polyol composition (PZ), wherein the polyol composition (PZ) comprises at least one polyol (P1) and a chain extender (KV1), wherein the polyol (P1) is selected from polytetrahydrofurans having an average molecular weight Mn in the range from 1200 to 2000 g/mol and the chain extender (KV1) is selected from the group consisting of 1,3-propanediol, 1,4-butanediol and 1,6-hexanediol and also to a process for producing a ski shoe or a part of a ski shoe from the thermoplastic polyurethane according to the invention and to the ski shoe or part of a ski shoe per se.
Abstract:
The present invention relates to a process for producing a thermoplastic polyurethane, comprising the provision of a composition Z(W) comprising at least one carbodiimide selected from the group consisting of monomeric aliphatic carbodiimides, oligomeric aliphatic carbodiimides, polymeric aliphatic carbodiimides, monomeric aromatic carbodiimides, oligomeric aromatic carbodiimides and polymeric aromatic carbodiimides, and at least one ester selected from the group consisting of citric acid esters, acetyl citric acid esters, phthalic acid esters, benzoic acid esters, adipic acid esters, hydrogenated phthalic acid esters and phosphoric acid esters; and the subsequent addition of the composition Z(W) to a thermoplastic polyurethane or a reaction mixture for producing a thermoplastic polyurethane. Further, the present invention relates to a thermoplastic polyurethane obtainable or obtained by a process according to the invention and to the use of the composition Z(W) as plasticizer for thermoplastic polyurethanes. The present invention also relates to moldings comprising a thermoplastic polyurethane according to the invention.
Abstract:
The present invention relates to polyurethanes based on at least one polyisocyanate and at least one polyester polyol, wherein the polyester polyol is based on at least one polyhydric alcohol and a mixture of two or more dicarboxylic acids, wherein at least one of the two or more dicarboxylic acids is at least partly obtained from renewable raw materials, to processes for producing such polyurethanes and also to moldings comprising such polyurethanes. The polyurethanes of the present invention have minimal tendency to bloom.