Abstract:
The present invention relates to a process for the conversion of ethane-1,2-diol to ethane-1,2-diamine and/or linear polyethylenimines of the formula H2N—[CH2CH2NH]n—CH2CH2NH2 wherein n≥1 comprising (i) providing a catalyst comprising a zeolitic material comprising YO2 and X2O3, wherein Y is a tetravalent element and X is a trivalent element, wherein the zeolitic material is selected from the group consisting of zeolitic materials having the MOR, FAU, CHA and/or GME framework structure, including combinations of two or more thereof; (ii) providing a gas stream comprising ethane-1,2-diol and ammonia; (iii) contacting the catalyst provided in (i) with the gas stream provided in (ii) for converting ethane-1,2-diol to ethane-1,2-diamine and/or linear polyethylenimines.
Abstract:
The present invention relates to the polyamines N,N′-diaminopropyl-2-methyl-cyclohexane-1,3-diamine and N,N′-diaminopropyl-4-methyl-cyclohexane-1,3-diamine and mixtures thereof, to the use thereof as curing agents for epoxy resin and to a curable composition comprising epoxy resin and these polyamines. Even at low temperatures this curing agent/the corresponding curable composition cures rapidly and is early-stage water resistant and is thus especially suitable for floor coatings. The invention further relates to the curing of this composition and the cured epoxy resin obtained by curing of this composition.
Abstract:
The present invention relates to a process for preparing ethylenediamine (EDA), where the process comprises the steps a) to c). In step a), formaldehyde is reacted with hydrocyanic acid (HCN) to form formaldehyde cyanohydrin (FACH), where the hydrocyanic acid is completely free or largely free of sulfur dioxide (SO2). The FACH prepared in this way is reacted with ammonia (NH3) to form aminoacetonitrile (AAN) in step b), whereupon a hydrogenation of AAN in the presence of a catalyst to form EDA is carried out in step c).
Abstract:
Process for preparing pyrrolidine of the formula I by reacting 1,4-butanediol (BDO) of the formula II with ammonia in the presence of hydrogen and a supported, metal-containing catalyst, wherein the catalytically active mass of the catalyst, prior to its reduction with hydrogen, comprises oxygen-containing compounds of aluminum, copper, nickel and cobalt and in the range from 0.2 to 5.0% by weight of oxygen-containing compounds of tin, calculated as SnO, and the reaction is carried out in the liquid phase at an absolute pressure in the range from 160 to 220 bar, a temperature in the range from 160 to 230° C., using ammonia in a molar ratio to BDO used of from 5 to 50 and in the presence of 1.0 to 4.5% by weight of hydrogen, based on the amount of BDO used.
Abstract:
The invention relates to a process for preparing primary amines by alcohol amination of alcohols with ammonia with the elimination of water, where the alcohol amination is carried out under homogeneous catalysis in the presence of at least one complex catalyst which comprises ruthenium and at least one at least bidental donor ligand, but no anionic ligands.
Abstract:
Process for preparing piperazine of the formula I by reacting diethanolamine (DEOA) of the formula II with ammonia in the presence of hydrogen and a supported, metal-containing catalyst has been found, wherein the catalytically active mass of the catalyst, prior to its reduction with hydrogen, comprises oxygen-containing compounds of aluminum, copper, nickel and cobalt and in the range from 0.2 to 5.0% by weight of oxygen-containing compounds of tin, calculated as SnO, and the reaction is carried out in the liquid phase at an absolute pressure in the range from 160 to 220 bar, a temperature in the range from 180 to 220° C., using ammonia in a molar ratio to DEOA used of from 5 to 25 and in the presence of 0.2 to 9.0% by weight of hydrogen, based on the total amount of DEOA used and ammonia.
Abstract:
A process for preparing ethylamines and monoisopropylamine (MIPA), in which bioethanol is reacted with ammonia in the presence of hydrogen and of a heterogeneous catalyst to give ethylamines, said bioethanol having a content of sulfur and/or sulfur compounds of ≧0.1 ppm by weight (calculated S), and then isopropanol is reacted with ammonia in the presence of the same catalyst and in the presence of hydrogen to give MIPA.
Abstract:
A process for continuous production of C2-C4-monoalkanolamines by reaction of a corresponding C2-C4-alkylene oxide with a molar excess of ammonia (NH3), wherein aqueous ammonia is employed, in the liquid phase and in the presence of an acidic cation exchanger as catalyst which contains a crosslinked copolymer comprising acidic functional groups as the carrier matrix, wherein the cation exchanger has a total exchange capacity of not less than 1.8 eq/L.
Abstract:
Process for the preparation of alkali metal salts of glycine or of racemic α-amino acids of the general formula (I) R1—CH(NH2)—COOH (I) in which R1 is selected from hydrogen, CH3, C2H5, CH(CH3)2, (CH2)2COOH and CH2OH, wherein an alkali metal salt of the corresponding α-ketocarboxylic acid or glyoxalic acid is reacted in the presence of at least one heterogeneous catalyst, which comprises at least one transition metal, in the presence of hydrogen with at least one nitrogen compound at temperatures in the range from 50 to 200° C., where the nitrogen compound is selected from primary and secondary amines and ammonia.