Abstract:
The present invention provides a composition comprising a pesticide and a copolymer, which contains in polymerized form a N-vinyllactam (monomer A); an acrylamide (monomer B) selected from N—C1-C6-alkyl acrylamide and N,N-di-C1-C6-alkyl acrylamide; and a C1-C4-alkyl (meth)acrylate (monomer C). Further on, it provides a process for preparing said composition by contacting the pesticide and the copolymer; a method for controlling phytopathogenic fungi and/or unwanted plant growth and/or unwanted insect or mite infestation and/or for regulating the growth of plants, wherein said composition is caused to act on the respective pests, their habitat or the plants to be protected from the respective pest, to the soil and/or to unwanted plants and/or the crop plants and/or their habitat; and a plant propagation material comprising said composition.
Abstract:
A composition for the immediate stopping of a free-radical polymerization comprises a) an inhibitor for the free-radical polymerization selected from among phenothiazines, b) an aprotic solvent and c) an ionic liquid. It serves to stabilize free-radically polymerizable monomers against free-radical polymerization. For the immediate stopping of free-radical polymerizations, the composition is added to a free-radically polymerizing system.
Abstract:
The present invention provides a composition comprising a pesticide and a copolymer, which contains in polymerized form a N-vinyllactam (monomer A); an acrylamide (monomer B) selected from N—C1-C6-alkyl acrylamide and N,N-di-C1-C6-alkyl acrylamide; and a C1-C4-alkyl (meth)acrylate (monomer C). Further on, it provides a process for preparing said composition by contacting the pesticide and the copolymer; a method for controlling phytopathogenic fungi and/or unwanted plant growth and/or unwanted insect or mite infestation and/or for regulating the growth of plants, wherein said composition is caused to act on the respective pests, their habitat or the plants to be protected from the respective pest, to the soil and/or to unwanted plants and/or the crop plants and/or their habitat; and a plant propagation material comprising said composition.
Abstract:
A process for the preparation of microcapsules including (a) preparation of an aqueous biphasic system by mixing (i) component (a1) including a component A selected from polyethylene glycol vinyl acetate comb polymers, polycarboxylates, polyethers, polyaspartates, polyvinylpyrrolidone, polyamines, and polylysine; wherein component (a1) is a monophasic system at 23° C., and forms a monophasic system at 23° C. if mixed with water in the range of from 1:99 to 99:1 by weight, and (ii) component (a2) containing water and a water-soluble component B, wherein water-soluble component B is different from component A, and wherein (a2) is a monophasic system at 23° C., (iii) at least one monomer (a3), and (iv) optionally at least one initiator (a4), wherein (a1), (a2), (a3), and (a4) can be mixed together in any order or simultaneously, followed by (b) optionally shearing of the biphasic system to form an emulsion, and (c) polymerization of monomer (a3).
Abstract:
The present invention relates to microcapsules comprising at least one polyethervinyl ester graftpolymer, at least one acrylic polymer, and water in the range of from 0.1% of weight to 0% of weight of the total polymer as well as to processes preparing the same.
Abstract:
Provided herein is a process for preparing an aqueous dispersion of microparticles containing a water-insoluble, solid, non-polymeric, organic active or functional material (M) and an aminoplast resin (A) which surrounds or embeds material (M). The process includes the following steps: i) providing an aqueous slurry of the material (M) in the form of coarse particles; ii) subjecting the aqueous slurry to shear forces such that the coarse particles of the material (M) are comminuted and an aqueous suspension of fine particles of the material (M) is obtained; and iii) performing a polycondensation of an aminoplast pre-condensate during step (ii) or in the aqueous suspension of the fine particles of the material (M) obtained in step (ii); wherein step (ii) is performed in the presence of at least one protective colloid and in the presence of at least a portion of the aminoplast pre-condensate subjected to the polycondensation of step (iii).