Abstract:
Systems and methods are provided for determining precedence between Radio Access Network (RAN) rules and Access Network Discovery and Selection Function (ANDSF) rules when a mobile communication device has access to more than one set of rules for offloading data. Systems and methods for transmitting an offloadable Access Point Name (APN) to a mobile communication device when RAN rules are used. Embodiments of the present disclosure combine the advantages of signaling methods when offloading information to a mobile communication device after a RAN rule has been satisfied such that a base station is able to broadcast a signal that enables all devices camped on an serving cell to offload to the APN.
Abstract:
Systems and methods are provided for determining precedence between Radio Access Network (RAN) rules and Access Network Discovery and Selection Function (ANDSF) rules when a mobile communication device has access to more than one set of rules for offloading data. Systems and methods for transmitting an offloadable Access Point Name (APN) to a mobile communication device when RAN rules are used. Embodiments of the present disclosure combine the advantages of signaling methods when offloading information to a mobile communication device after a RAN rule has been satisfied such that a base station is able to broadcast a signal that enables all devices camped on an serving cell to offload to the APN.
Abstract:
A communication device configured to provide Web real-time communication (WebRTC) for internet protocol (IP) multimedia services utilizing one or more 3GPP protocols. The communication device can be configured to authenticate communication with one or more clients using one or more IP Multimedia Subsystem (IMS) credentials. The communication device can also be configured to convert communications between WebRTC and 3GPP protocols utilizing Traversal Using Relays around Network Address Translation (TURN) functionality implemented within the communication device.
Abstract:
Systems and methods are disclosed to provide offloading procedures that reduce signaling load. Specifically, embodiments of the present disclosure provide offloading techniques that enable signaling overhead caused by attachment procedures to be avoided when user equipment (UE) reconnects to a cellular network after offloading data to a Wireless Local Area Network (WLAN). According to an embodiment, at least one Public Data Network (PDN) is kept connected through the cellular network access when other PDN connections are offloaded to WLAN. According to another embodiment, a PDN connection through cellular network access is suspended, rather than detached, when data is offloaded to WLAN.
Abstract:
A device for facilitating cellular-wireless local area network (WLAN) interworking may include at least one processor circuit. The processor circuit may be configured to receive a packet including a first tunnel identifier and addressed to a user equipment (UE). The processor circuit may be configured to identify a radio bearer associated with the first tunnel identifier, where the radio bearer is configured to facilitate transmission of the packet to the UE via cellular communications. The processor circuit may be configured to determine whether the radio bearer has been offloaded over a WLAN. The processor circuit may be configured to, when the radio bearer has been offloaded over the WLAN, identify a second tunnel identifier mapped to the radio bearer; encapsulate the packet based on the second tunnel identifier, where the encapsulated packet includes the second tunnel identifier; and transmit the encapsulated packet to the UE over the WLAN.
Abstract:
Systems and methods disclosed herein provide proximity services using a proximity services server that can be integrated into existing network infrastructure. Proximity services procedures are disclosed, including procedures for registration to a proximity services server, publication of the direct path of a proximity services enabled user equipment (UE) to a proximity services server, requesting proximity information by a UE, and notifying UEs that are in proximity.
Abstract:
Systems and methods are disclosed for offloading traffic from a first network to a second network using offload preference indication (OPI) information. The OPI information can be sent to a mobile communication device using the Access Network Discovery and Selection Function (ANDSF) framework or Radio Access Network (RAN) rules. Systems and methods are disclosed for offloading traffic for users in user groups using a variety of techniques, including randomization techniques, assigned offload class techniques, and bitmap allocation techniques.