摘要:
Methods of diagnosing and treating microbiome-associated disease or improving health using interaction network parameters are provided. Methods are provided to analyze interaction networks between microbes, and between microbes and the host, to determine important (e.g. “highly-connected”) organisms or molecules as determined by various network parameters. Methods are provided including and beyond correlation to use these “highly-connected” organisms or molecules as targets for modulation or as therapeutic agents to improve health.
摘要:
One aspect of the present invention relates to magnetic nanoparticles colloidally stabilized in aqueous milieu by association with an organic phase. The organic phase may be either a fluorinated polymer or an organic hydrocarbon bilayer, wherein the two layers are chemically bonded to each other. The stabilized particles are further non-toxic and provide useful enhancements in bioprocesses. Another aspect of the present invention relates to compositions comprising an oxygen-dissolving fluid vehicle and surface modified, nanometer-sized magnetic particles. The inventive compositions have utility in a wide range of applications, but are particularly suitable for use as recyclable oxygen carriers, separation and purification vehicles, and bioprocessing media, including fermentation processes.
摘要:
Provided herein are methods and compositions for treating and/or preventing hepatic encephalopathy involving administering to a subject a pharmaceutical composition comprising a purified bacterial mixture.
摘要:
One aspect of the present invention relates to magnetic nanoparticles colloidally stabilized in aqueous milieu by association with an organic phase. The organic phase may be either a fluorinated polymer or an organic hydrocarbon bilayer, wherein the two layers are chemically bonded to each other. The stabilized particles are further non-toxic and provide useful enhancements in bioprocesses. Another aspect of the present invention relates to compositions comprising an oxygen-dissolving fluid vehicle and surface modified, nanometer-sized magnetic particles. The inventive compositions have utility in a wide range of applications, but are particularly suitable for use as recyclable oxygen carriers, separation and purification vehicles, and bioprocessing media, including fermentation processes.