Abstract:
A torque-limiting coupler for connecting an electric motor to a rotatable input of a vehicle is provided, including: a rigid frame that is configured to be coupled to one of the rotatable input or an output shaft of the electric motor; and an elastic member, configured to engage the other of the rotatable input or the output shaft of the electric motor, that engages the rigid frame such that the elastic member substantially maintains its shape and inhibits angular displacement between the rotatable input and the output shaft when an amount of torque received from the output shaft is below a predetermined torque limit, the elastic member changes shape permitting angular displacement between the rotatable input and the output shaft when an amount of torque received from the output shaft exceeds the predetermined torque limit.
Abstract:
An engine variable camshaft timing phaser (10) includes a sprocket (12) and a planetary gear set (14). The sprocket (12) receives rotational drive input from an engine crankshaft. The planetary gear set (14) includes two or more ring gears (34, 36), multiple planet gears (32), a sun gear (30), a first set of teeth (82), and a second set of teeth (40, 62). One of the ring gears (34, 36) can be connected to the sprocket (12) and one of the ring gears (34, 36) transmits rotational drive output to an engine camshaft. The sun gear (30) engages with the planet gears (32) and is driven by an electric motor (38). In order to bring the planetary gear set (14) to a locked condition, the first set of teeth (82) and the second set of teeth (40, 62) are mated with each other.
Abstract:
A torque-limiting coupler for connecting an electric motor to a rotatable input of a vehicle is provided, including: a rigid frame that is configured to be coupled to one of the rotatable input or an output shaft of the electric motor; and an clastic member, configured to engage the other of the rotatable input or the output shaft of the electric motor, that engages the rigid frame such that the elastic member substantially maintains its shape and inhibits angular displacement between the rotatable input and the output shaft when an amount of torque received from the output shaft is below a predetermined torque limit, the elastic member changes shape permitting angular displacement between the rotatable input and the output shaft when an amount of torque received from the output shaft exceeds the predetermined torque limit.
Abstract:
An electric phaser dynamically adjusting the rotational relationship of a camshaft of an internal combustion engine with respect to an engine crankshaft includes an electric motor and a planetary drive. In some embodiments, the planetary drive includes a sun gear, planet gears, a sprocket ring gear driven by the engine crankshaft, a camshaft ring gear rotating with the camshaft, a carrier, a lever arm, and a load generator. The lever arm is rotatably attached to at least one planet gear and pivotably attached to the carrier at a pivot point on the carrier located off-axis from the sun axis. The load generator is coupled to the carrier and applies a torque load to the lever arm to reduce backlash in the split ring planetary drive. The difference between the number of camshaft ring gear teeth and sprocket ring gear teeth is a multiple of the number of planet gears.
Abstract:
An electric phaser dynamically adjusting the rotational relationship of a camshaft of an internal combustion engine with respect to an engine crankshaft includes an electric motor and a planetary drive. In some embodiments, the planetary drive includes a sun gear, planet gears, a sprocket ring gear driven by the engine crankshaft, a camshaft ring gear rotating with the camshaft, a carrier, a lever arm, and a load generator. The lever arm is rotatably attached to at least one planet gear and pivotably attached to the carrier at a pivot point on the carrier located off-axis from the sun axis. The load generator is coupled to the carrier and applies a torque load to the lever arm to reduce backlash in the split ring planetary drive. The difference between the number of camshaft ring gear teeth and sprocket ring gear teeth is a multiple of the number of planet gears.