Abstract:
A method, using multiple position sensors, for determining a characteristic of the actuator or a system, wherein the characteristic is causing or is indicative of the cause of the change in position of the actuator. One characteristic may be the lost motion of the actuator or system. Lost motion is the lag between the motion of a controlled device and that of an electrical drive device due to yielding or looseness. The lost motion of an actuator may increase as components wear and may eventually degrade the function or cause failure of the actuator and/or system.
Abstract:
A turbocharger (1) includes a wastegate valve (30) supported on the turbine housing (8), and a pneumatic actuator (100) configured to actuate the wastegate valve (30). The pneumatic actuator (100) includes a housing (101) separated into compartments (104, 108) by a separating member (110, 112). The actuator (100) includes a piston (112) disposed in the housing (101) that defines at least a portion of the separating member (110, 112), a piston-biasing spring (120) disposed in the housing (101), a first in let (126) that is in fluid communication with the first compartment (104), the first inlet configured to be connected to a non-zero-pressure fluid source (8), and a second inlet (116) that is in fluid communication with the second compartment (108), the second inlet (116) configured to be connected to a non-zero-pressure fluid source (104).
Abstract:
A turbocharger assembly is disclosed with a connected lever. An actuator may be spaced away from the lever. An arm may extend from the actuator and may be connected to the lever by a preloaded joint. The joint may include a pin fixed to the lever or the arm. An opening may be provided in the lever or the arm to which the pin is not fixed. The pin may have a shaped section that matches the shape of the opening to provide selected degrees of freedom. A spring element may be engaged in the groove and may apply a force to the pin compensating for wear between the pin and the mating surface by pulling the pin into the opening under the force.
Abstract:
A pneumatic actuator (312, 412) adapted for use with a turbocharger includes a diaphragm (16) having a valley (46), and a piston (314, 414) having a lip (350, 450) extending from a flange (344, 444). A portion of the lip (350, 450) curves or bends around the diaphragm (16) and possibly forms a double bend. The distal end (348, 448) of the piston (314, 414) is adapted to contact a majority of the valley (46) of the diaphragm (16) in its preloaded state. The distal end (348, 448) may have a complementary shape with a shape of the valley (46). The edge of the flange (344, 444) is always spaced away from the diaphragm (16) to prevent contact of the edge with the diaphragm (16).
Abstract:
A method, using multiple position sensors, for determining a characteristic of the actuator or a system, wherein the characteristic is causing or is indicative of the cause of the change in position of the actuator. One characteristic may be the lost motion of the actuator or system. Lost motion is the lag between the motion of a controlled device and that of an electrical drive device due to yielding or looseness. The lost motion of an actuator may increase as components wear and may eventually degrade the function or cause failure of the actuator and/or system.
Abstract:
A pivot shaft assembly for a turbocharger with variable turbine geometry (VTG) is provided. The pivot shaft assembly may include a pivot shaft, a pivot fork extending from the pivot shaft, a VTG lever disposed on the pivot shaft, and a retention collar axially coupled to the pivot shaft such that the VTG lever is axially aligned with the retention collar and the pivot shaft.
Abstract:
A turbocharger is used within a vehicle and includes an electronic actuator assembly. The electronic actuator assembly includes an actuator housing coupled to at least one of the turbine housing, the compressor housing, and the bearing housing, and an accelerometer coupled to the actuator housing. The accelerometer is adapted to detect vibration of at least one of the turbine housing, the compressor housing, the bearing housing, and the actuator housing thereby obtaining acceleration data of at least one of the turbine housing, the compressor housing, the bearing housing, and the actuator housing to determine rotational speed of the turbocharger shaft. Another embodiment includes a vibration detection assembly having an accelerometer coupled to a vehicle component and the vehicle component is one or more of a turbocharger, a valve assembly, an electronically driven compressor, and a turbocharger having an integral electric motor.
Abstract:
A pivot shaft assembly for a turbocharger with variable turbine geometry (VTG) is provided. The pivot shaft assembly may include a pivot shaft, a pivot fork extending from the pivot shaft, a VTG lever disposed on the pivot shaft, and a retention collar axially coupled to the pivot shaft such that the VTG lever is axially aligned with the retention collar and the pivot shaft.
Abstract:
A variable turbine geometry turbine turbocharger (1) includes vanes (30) configured to control flow of exhaust gas to a turbine wheel (12), and an adjustment ring (40) connected to each vane (30) that controls the angular orientation of all the vanes (30) in unison. The adjustment ring (40) is supported on the bearing housing (16) and is supported on, and piloted relative to, an axially extending nose portion (17) of the bearing housing (16) by surface features (60) formed along an inner edge (43) of the adjustment ring (40).