Abstract:
Systems and methods to deliver streaming video over a hybrid network are provided herein. An adjusted bitrate to transmit video from a server to a client is determined in response to a fast-forward or rewind request. Frames from a video are selectively transmitted to accommodate for the adjusted bitrate based and a bitrate of a connection between the server and the client.
Abstract:
A video control-plane gateway device includes at least one processor circuit. The at least one processor circuit is configured to establish a local connection with a video client device. The at least one processor circuit is configured to receive, over the local connection, a request for a video stream from the video client device. The at least one processor circuit is configured to transmit the request to a network video server via a wireless access point. The at least one processor circuit is configured to receive, from the wireless access point, control information for reception of the video stream on a downlink channel. The at least one processor circuit is configured to transmit, over the local connection, the control information to the video client device. In one or more implementations, the downlink channel is a supplementary downlink channel that is associated with a primary downlink channel through carrier aggregation.
Abstract:
A content distribution system may include a headend server and media converters, the headend server being configured to distribute content items to user devices via the media converters and gateway devices. Each of the media converters may include a media converter cache and may be coupled to the headend server and a subset of the gateway devices, where each of the user devices is communicatively coupled to one of the gateway devices. The headend server may be further configured to determine one of the content items that is expected to be requested by a group of the user devices, determine one of the media converters that is coupled, via the subset of the gateway devices, to a largest number of user devices in the group of the user devices, and coordinate storing the one of the content items in the media converter cache of the one of the media converters.
Abstract:
A system for layered local caching of downstream shared media in a hierarchical tree network arrangement includes a first network node on a first distribution network having a first caching controller. The first network node configured to store a video segment transmitted on the first distribution network based on a first instruction received by the first caching controller from a central caching controller communicatively coupled to the first distribution network. The central caching controller is located upstream from the first network node. The system includes a second network node on a second distribution network having a second caching controller and communicatively coupled to the first network node. The second network node configured to store a video segment transmitted on the second distribution network based on a second instruction received by the second caching controller from the first caching controller.
Abstract:
A system includes one or more network media service devices, with each network media node operably connected upstream to one or more gateway devices. At least one of the network media service devices is configured to intercept an ABR-related request to receive digital media content for a media channel sent from a client set top box to a remote ABR server located upstream from the at least one network media device, identify a second gateway device that is storing the digital media content, the second gateway device having previously received the digital media content from the remote ABR server, and return a network address of the second gateway device to the client set top box for use by the client set top box to receive the digital media content from the second gateway device. In various implementations, the network address is returned in connection with an HTTP response indicating a redirection to the network address.
Abstract:
A system for transcoding locally cached content may include a memory configured to store at least a video stream. A controller communicatively coupled to the memory may be configured to determine a video definition format of a requested video stream and compare the requested video stream with a video definition format of a cached version of the requested video stream. A transcoder coupled to the controller may be configured to convert the cached version of the requested video stream to a lower video definition format if the video definition format of the cached version is determined to be higher than the video definition format of the requested video stream. If the video definition format of the requested video stream is same as the video definition format of the cached version, the controller may supply the requested video stream using the cached version stored in the memory without transcoding.
Abstract:
A device for providing downlink channel access for non-operator devices includes at least one processor circuit. The at least one processor circuit is configured to establish a local connection with an operator device that is serviced by a network operator. The at least one processor circuit is configured to provide, to the operator device over the local connection, a request to establish a connection to a network, the request comprising a destination address. The at least one processor circuit is configured to receive, from the operator device over the local connection, control information for reception of a downlink channel provisioned by the network operator for the operator device. The at least one processor circuit is configured to receive downlink data associated with the destination address on the downlink channel and provide, to the operator device, uplink data associated with the destination address for transmission to the network.
Abstract:
A distributed adaptive bit rate (ABR) proxy system may include a gateway device that includes a first transcoder and is configured to receive segments of a content item from an ABR server, and a secondary device that includes a second transcoder and is configured to receive the segments of the content item from the gateway device. The first transcoder may transcode the segments based at least in part on a first ABR profile to generate first transcoded segments, and the second transcoder may transcode the segments based at least in part on a second ABR profile to generate second transcoded segments. The gateway device may advertise the first and second ABR profiles to user devices and may transmit the first transcoded segments to the user devices in response to requests therefor. The secondary device may transmit the second transcoded segments to the user devices in response to requests therefor.
Abstract:
A system for transmitting multiple adaptive bit rate (ABR) segment streams on a shared frequency may include an ABR segment generator and transmitter circuitry. The ABR segment generator may encode a content item based at least in part on different ABR profiles to generate encoded streams. The ABR profiles may indicate encoding parameters corresponding to the encoded streams, e.g., bit rates, resolutions, frame rates and/or codecs. The ABR segment generator may be further configured to segment the encoded streams to generate ABR segment streams. The transmitter circuitry may be configured to transmit the ABR segment streams on a shared frequency, such as by transmitting the segment streams over spatially separated antennas, or by applying different orbital angular momentums to the ABR segment streams. In one or more implementations, the system may further include a segment interleaver that is configured to interleave the ABR segment streams.
Abstract:
A system for adaptive bit rate distribution of multicast streams may include one or more processors and a memory. The one or more processors may be configured to identify streams, such as multicast streams, transmitted by a content delivery network. The streams may each contain a content item that is encoded at a different bit rate for each stream. The one or more processors may determine segments of the streams, for example based on time stamps associated with the content item or markers of the streams. The one or more processors may transmit a first segment of a first stream encoded at a first bit rate to a user device in response to a request therefor and, upon completing the transmission of the first segment, transmit a second segment of a second stream encoded at a second bit rate to the user device in response to a request therefor.