Abstract:
The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridging η5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and a activator. The compositions and methods presented herein include ethylene polymers with low melt elasticity.
Abstract:
A system for improving processing of polyethylene resins, comprising a processor; a memory; an output device; and an analysis component stored in the memory, that when executed on the processor, configures the processor to receive a shear stress as a function of shear rate for a plurality of multimodal metallocene-catalyzed polyethylene samples, wherein the determination of the shear stress as a function of the shear rate comprises using capillary rheometry; determine values for a magnitude of slip-stick, a stress for smooth to matte transition, and a shear rate for smooth to matte transition for each of the plurality of multimodal metallocene-catalyzed polyethylene samples based on the shear stress and the shear rate measured from capillary rheometry; identify individual multimodal metallocene-catalyzed polyethylene resins from the plurality of multimodal metallocene-catalyzed polyethylene samples having a reduced tendency to melt fracture characterized by a magnitude of slip-stick greater than about 300 psi, a stress for smooth to matte transition greater than about 90 kPa, and a shear rate for smooth to matte transition greater than about 10 s−1; and output an identification of the individual multimodal metallocene-catalyzed polyethylene resins to the output device.
Abstract:
A method of preparing a medium-density polyethylene pipe comprising melting a multimodal metallocene-catalyzed polyethylene resin to form a molten polyethylene, wherein the multimodal metallocene-catalyzed polyethylene resin has a density of from about 0.925 g/ml to about 0.942 g/ml, a magnitude of slip-stick greater than about 300 psi, a stress for smooth to matte transition of greater than about 90 kPa of stress, and a shear rate for smooth to matte transition greater than about 10 s−1, wherein the magnitude of slip-stick, stress for smooth to matte transition, and shear rate for smooth to matte transition are determined by a capillary rheology test; and forming the molten polyethylene resin into pipe. A pipe prepared from a multimodal metallocene-catalyzed polyethylene resin having a density of from about 0.925 g/ml to about 0.942 g/ml, a magnitude of slip-stick greater than about 300 psi; a stress for smooth to matte transition of greater than about 90 kPa, and a shear rate for smooth to matte transition greater than about 10 s−1, wherein the magnitude of slip-stick, stress for smooth to matte transition, and shear rate for smooth to matte transition are determined by a capillary rheology test.
Abstract:
A method of improving processing of polyethylene resins comprising obtaining a plurality of multimodal metallocene-catalyzed polyethylene samples measuring the shear stress as a function of shear rate for the plurality of multimodal metallocene-catalyzed polyethylene samples using capillary rheometry wherein the measuring yields values for a magnitude of slip-stick, a stress for smooth to matte transition, and a shear rate for smooth to matte transition; and identifying from the plurality of multimodal metallocene-catalyzed polyethylene samples individual multimodal metallocene-catalyzed polyethylene resins having a reduced tendency to melt fracture characterized by a magnitude of slip-stick greater than about 300 psi, a stress for smooth to matte transition greater than about 90 kPa, and a shear rate for smooth to matte transition greater than about 10 s−1.
Abstract:
A method of preparing a medium-density polyethylene pipe comprising melting a multimodal metallocene-catalyzed polyethylene resin to form a molten polyethylene, wherein the multimodal metallocene-catalyzed polyethylene resin has a density of from about 0.925 g/ml to about 0.942 g/ml, a magnitude of slip-stick greater than about 300 psi, a stress for smooth to matte transition of greater than about 90 kPa of stress, and a shear rate for smooth to matte transition greater than about 10 s−1, wherein the magnitude of slip-stick, stress for smooth to matte transition, and shear rate for smooth to matte transition are determined by a capillary rheology test; and forming the molten polyethylene resin into pipe. A pipe prepared from a multimodal metallocene-catalyzed polyethylene resin having a density of from about 0.925 g/ml to about 0.942 g/ml, a magnitude of slip-stick greater than about 300 psi; a stress for smooth to matte transition of greater than about 90 kPa, and a shear rate for smooth to matte transition greater than about 10 s−1, wherein the magnitude of slip-stick, stress for smooth to matte transition, and shear rate for smooth to matte transition are determined by a capillary rheology test.
Abstract:
The present techniques relate to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene compound comprising bridging η5-cyclopentadienyl-type ligands, typically in combination with a cocatalyst, and a activator. The compositions and methods presented herein include ethylene polymers with low melt elasticity.