Dual catalyst system for producing polyethylene with long chain branching for blow molding applications

    公开(公告)号:US11267919B2

    公开(公告)日:2022-03-08

    申请号:US16898502

    申请日:2020-06-11

    摘要: Ethylene-based polymers are characterized by a melt index less than 1 g/10 min, a density from 0.94 to 0.965 g/cm3, a Mw from 100,000 to 250,000 g/mol, a relaxation time from 0.5 to 3 sec, and an average number of long chain branches (LCBs) per 1,000,000 total carbon atoms in a molecular weight range of 300,000 to 900,000 g/mol that is greater than that in a molecular weight range of 1,000,000 to 2,000,000 g/mol, or an average number of LCBs per 1,000,000 total carbon atoms in a molecular weight range of 1,000,000 to 2,000,000 g/mol of less than or equal to about 5 and a maximum ratio of ηE/3η at an extensional rate of 0.1 sec−1 from 1.2 to 10. These polymers have substantially no long chain branching in the high molecular weight fraction of the polymer, but instead have significant long chain branching in a lower molecular weight fraction, such that polymer melt strength and parison stability are maintained for the fabrication of blow molded products and other articles of manufacture. These ethylene polymers can be produced using a dual catalyst system containing a single or two atom bridged metallocene compound with two indenyl groups, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group.

    Dual catalyst system for producing high density polyethylenes with long chain branching

    公开(公告)号:US11014997B2

    公开(公告)日:2021-05-25

    申请号:US16413676

    申请日:2019-05-16

    IPC分类号: C08F10/02 C08F2/34 C08F4/6592

    摘要: Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 1 g/10 min, a density from 0.93 to 0.965 g/cm3, a CY-a parameter at 190° C. of less than 0.2, an average number of short chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 40,000 to 60,000 g/mol, and an average number of long chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 4,000,000 to 6,000,000 g/mol. The ethylene polymers can be used to fabricate pipes, blown films, and blow molded products, and the ethylene polymers can be produced with a dual catalyst system containing a single atom bridged or two carbon atom bridged metallocene compound with two indenyl groups or an indenyl group and a cyclopentadienyl group, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group with an alkenyl substituent.

    POLYOLEFIN PROCESS MONITORING AND CONTROL
    9.
    发明申请

    公开(公告)号:US20200332035A1

    公开(公告)日:2020-10-22

    申请号:US16386794

    申请日:2019-04-17

    IPC分类号: C08F210/16

    摘要: Methods of controlling olefin polymerization reactor systems are provided herein. In some aspects, the methods include a) selecting n input variables, each input variable corresponding to a process condition for an olefin polymerization process; b) identifying m response variables, each response variable corresponding to a measurable polymer property; c) adjusting one of more of the n input variables in a plurality of polymerization reactions using the olefin polymerization reactor system, to provide a plurality of olefin polymers and measuring each of the m response variables as a function of the input variables for each olefin polymer; d) analyzing the change in each of the response variables as a function of the input variables to determine the coefficients; e) calculating a Response Surface Model (RSM) using general equations for each response variable determined in step d) to correlate any combination of the n input variables with one or more of m response variables; f) applying n selected input variables to the calculated Response Surface Model (RSM) to predict one or more of m target response variables, each target response variable corresponding to a measurable polymer property; and g) using the n selected input variables Is1 to Isn to operate the olefin polymerization reactor system and provide a polyolefin product.