Abstract:
Methods and devices for converting printed media into audio data. In one embodiment, a device includes a scanning platform for supporting the document to be scanned, a scanning mechanism for converting images on the document into image data, and a processor configured to convert the scanned image data into audio data. The device may further include printer components configured to create a hardcopy of the image data, an audio device such as a speaker, and an interface for outputting the image data or audio data.
Abstract:
An illumination assembly for a scanner comprising a light source, a primary reflector and a secondary reflector. The primary reflector comprises a lower member and upper member spaced away from the lower member. The upper member has a heatsink for dissipating the heat of the light source. The light source is positioned between the lower and upper members and is attached to the upper member allowing for decreased vertical height for the illumination assembly.
Abstract:
A scanhead of an imaging apparatus for providing image illumination uniformity for imaging of a media sheet, and a method thereof, are disclosed. The scanhead includes a lens, a lens shading plate and a sensor array. The lens is capable of receiving light reflected from the media sheet and focusing the received light. The lens shading plate is capable of assuming a lens shading plate position of a plurality of lens shading plate positions between the lens and the sensor array for receiving the light focused by the lens. The lens shading plate, on assuming the lens shading plate position, is capable of adjusting the light received from the lens for focusing the light onto the sensor array, thereby providing image illumination uniformity, for the imaging of the media sheet.
Abstract:
A scanning device for simplex and duplex scanning. The device may include a scan head for capturing content appearing on a page; a substantially C-shaped first scan path for simplex scanning, the first scan path adapted to guide the page relative to the scan head for scanning a first side of the page; a second scan path for duplex scanning, the second scan path adapted to guide the page relative to the scan head for scanning a first side of the page and a second side of the page; a path diverter, the path diverter adapted to direct the page to the first path or the second path; and a controller for controlling the first and second scan paths and the diverter. The second scan path forms a loop for moving the first and second sides of the page so that each is temporarily disposed adjacent the scan head.
Abstract:
A method for providing a visible reference marker on a scanning unit for orienting an item to be scanned or copied includes the steps of emitting a light from a light source, guiding the light to a scanning unit having a contact glass scanning surface, and redirecting the light to define an illuminated reference marker substantially adjacent to the contact glass. A reference marker assembly for accomplishing that method is provided, including a light source, a waveguide for guiding light emitted from the light source to a scanning unit having a contact glass, and a redirector for redirecting the light to define an illuminated reference marker adjacent to the contact glass, for orienting an item to be copied or scanned. The light source may be a light emitting diode, and the redirector may be a light diffuser for redirecting the collected light to define an illuminated reference marker adjacent to the contact glass.
Abstract:
Methods of identifying the location and dimensions of a contaminant particle on a calibration strip comprise imaging a calibration strip comprising a plurality of channels and a plurality of pixel columns. The method also includes generating a normalized local average pixel intensity value and locating a contaminant particle in a pixel column by comparing the intensity of an individual pixel in the pixel column to the normalized local average pixel intensity value. An intensity value of an individual pixel less than a predefined limit set below the normalized local average pixel intensity value corresponds to a location of a contaminant particle. The method further includes identifying the number of adjacent pixels in a pixel column less than a predefined limit set below the normalized local average pixel intensity value.
Abstract:
Methods for automatically grading multiple choice tests using test question sheets marked by a test-taker. Image processing algorithms automatically recognize the circled answer selections on the test question sheets. Using the invention multiple choice tests may be scanned and graded automatically without the use of bubble sheets, thereby simplifying and reducing the cost of testing.
Abstract:
Information on a document may be encoded using indicia, such as end-to-end line segments, that form one or more visually non-intrusive borders. The coded borders may be decoded from the document using a scanner, such as an optical scanner. The coded borders also serve as a visually non-intrusive way to separate and identify content in the document.
Abstract:
An illumination assembly for a scanner according to one example embodiment includes a light source, a first reflector and a second reflector. The first reflector has a curved structure and is positioned directly in the optical path of the light source. The first reflector has a first portion and a second portion. The first portion of the first reflector is positioned to reflect light received from the light source toward a target area to be scanned. The second portion of the first reflector is positioned to reflect light received from the light source toward the second reflector. The second reflector is positioned to reflect light received from the first reflector toward the target area.
Abstract:
A scan module including an image sensor defining a scan field, at least one lamp positioned to illuminate at least a portion of the scan field, and a second light source positioned to provide illumination for the portion of the scan field.