Abstract:
Methods, apparatus, and systems for the process-efficient generation of data records for data communications involving groups or aggregates of user equipment (UE), such as IoT devices, are described. In one illustrative example, for each one of a plurality of UEs associated with a group or aggregation identifier (ID), a request which includes data indicative of a network resource usage event of the UE is received and the data are stored in association with the group or aggregation ID. In response to identifying a predetermined condition, the data indicative of the network resource usage events associated with the group or aggregation ID are aggregated, and a request for generating a data record based on the aggregated data is sent to a data function for generating the data record. The generated data record (e.g. a CDR) may be stored for subsequent retrieval for reporting, analysis, network/communications management, or billing.
Abstract:
Methods and apparatus for use in establishing a group session in a mobile network for subscribers associated with a group are described. In one illustrative example, an access and mobility management function (AMF) entity receives, from a user equipment (UE), a request for registration which includes network slice selection assistance information (NSSAI). The NSSAI includes a group identifier associated with a group of subscribers. The AMF entity sends, to a unified data management (UDM) entity, a request for subscriber data which includes the group identifier. The AMF entity receives, from the UDM, a response to the request for subscriber data which includes a plurality of subscriber identifiers corresponding to the subscribers of the group. For a group session, the AMF entity creates a context associated with the group identifier and stores the context locally.
Abstract:
A method is provided in one example embodiment and may include receiving, by a mobility management frontend, an attach request for a user equipment (UE) to attach the UE to a core network slice type for a mobile core Software Defined Network (SDN) infrastructure, wherein a plurality of core network slice types are available for the mobile core SDN infrastructure to receive traffic from a plurality of UEs; determining a particular core network slice type within the mobile core SDN infrastructure to serve the UE based on subscriber information associated with the UE; selecting a particular slice instance of the particular core network slice type to receive traffic for the UE; and forwarding traffic for the UE between a Radio Access Network (RAN) and the particular slice instance by the mobility management frontend.
Abstract:
A method is provided in one example embodiment and may include establishing a first binding for a first session for a UE, wherein the first binding includes, at least in part, PCEF connectivity information for a PCEF associated with a PGW hosting the first session for the UE, wherein the first binding is established by a first DRA in a first IP domain; receiving a request by second DRA in a second IP domain associated with establishing a second session for the UE; determining a PCRF serving the first session for the UE; and binding the second session for the UE with the first session for the UE. A method is provided in another example embodiment and may include exchanging PCEF connectivity information over a Dr interface between a plurality DRAs and maintaining PCEF connectivity information for one or more peer DRAs to which each DRA is connected.
Abstract:
Methods, apparatus, and systems for the process-efficient generation of data records for data communications involving groups or aggregates of user equipment (UE), such as IoT devices, are described. In one illustrative example, for each one of a plurality of UEs associated with a group or aggregation identifier (ID), a request which includes data indicative of a network resource usage event of the UE is received and the data are stored in association with the group or aggregation ID. In response to identifying a predetermined condition, the data indicative of the network resource usage events associated with the group or aggregation ID are aggregated, and a request for generating a data record based on the aggregated data is sent to a data function for generating the data record. The generated data record (e.g. a CDR) may be stored for subsequent retrieval for reporting, analysis, network/communications management, or billing.
Abstract:
Methods, apparatus, and systems for the process-efficient generation of data records for data communications involving groups or aggregates of user equipment (UE), such as IoT devices, are described. In one illustrative example, for each one of a plurality of UEs associated with a group or aggregation identifier (ID), a request which includes data indicative of a network resource usage event of the UE is received and the data are stored in association with the group or aggregation ID. In response to identifying a predetermined condition, the data indicative of the network resource usage events associated with the group or aggregation ID are aggregated, and a request for generating a data record based on the aggregated data is sent to a data function for generating the data record. The generated data record (e.g. a CDR) may be stored for subsequent retrieval for reporting, analysis, network/communications management, or billing.
Abstract:
In some implementations, a message indicating a request for delivery of data to user equipment (UE) (e.g. an IoT device) operative for communications in a mobile network may be received from an application server. One or more first loading or congestion indication values indicative of a first loading or congestion at one or more first network nodes along a first mobile network route may be obtained. In addition, one or more second loading or congestion indication values indicative of a second loading or congestion at one or more second network nodes along a second mobile network route may be obtained. The first or the second mobile network route may be selected based on at least one of the one or more first and the second loading or congestion indication values. The data may be delivered to the UE over the selected mobile network route.
Abstract:
A method is provided in one example embodiment and may include receiving congestion information for an environment in which a user equipment (UE) is operating; receiving a first request to deliver content to the UE; determining that the environment in which the UE is operating is experiencing congestion based, at least in part, on the congestion information; determining a re-try interval based, at least in part, on the congestion information; and deferring delivery of the content to the UE until the re-try interval has expired. In one example embodiment, the method can include provisioning one or more policy rules for a service data flow associated with the content and communicating the indication indicating that delivery of the content has been deferred to a charging system to set charging information for at least one of a user associated with the UE or a provider of the content.
Abstract:
A method is provided in one example embodiment and may include maintaining, by a Diameter Routing Agent (DRA), an availability status for a plurality of network elements; receiving a request associated with a user equipment (UE) session, wherein a first network element of the plurality of network elements is serving the UE session; determining that the first network element serving the UE session is unavailable; and re-establishing the UE session at a second network element of the plurality of network elements that is available, wherein the re-establishing is performed without terminating the UE session.
Abstract:
A method is provided in one example embodiment and may include receiving load information for a plurality of cells of a Radio Access Network (RAN); determining, for each of a plurality of user equipment (UE) in each cell, identification information for each UE and an Access Point Name (APN) to which each UE is connected; identifying, from a plurality of policy servers, each policy server that serves each APN to which each UE in each cell of the plurality of cells is connected; and sending, to each of a particular policy server, congestion information comprising: an identity for each cell having UE that are connected to each APN served by the particular policy server; the corresponding congestion level for each of the cells; and a per-cell UE list identifying each of a plurality of UE connected to each of APNs served by the particular policy server.