Abstract:
In one embodiment, a video processing server including a memory capable of storing data and a processor is disclosed. The processor is configured for using the data such that the video processing server can receive a request redirected from a gateway for a video content, wherein the request is redirected by the gateway based on information contained in the request and wherein the information contained in the request includes control data used for an optimal delivery of the video content. The processor is further configured for using the data such that the video processing server can send the redirected request to a content provider identified in the request, receive the requested video content from the content provider, and generate a response to the request by modifying the video content based on the control data.
Abstract:
Methods and systems for providing a dynamic and real time load factor that can be shared with other network elements is disclosed. The load factor can be used in determining the relative load among a set of network elements and in distributing new sessions requests as well as existing session on the set of network elements. The load factor can also be used for determining to which network element a user equipment is handed off. The dynamic load factor can also be shared amongst network elements to determine how the load is balanced among the network elements, such as a mobility management entity (MME).
Abstract:
This disclosure relates to a system and method for routing data packets adaptively in a communication system. As the proliferation of data rich content and increasingly more capable mobile devices has continued, the amount of data communicated over mobile operator's networks can continue to exponentially increase. One way to accommodate increased data traffic and provide high quality data communication services to end users is by utilizing network resources efficiently. This disclosure provides systems and methods for efficiently utilizing network resources by providing adaptive intelligence to data packet routing systems.
Abstract:
This disclosure relates to a system and method for routing data packets adaptively in a communication system. As the proliferation of data rich content and increasingly more capable mobile devices has continued, the amount of data communicated over mobile operator's networks can continue to exponentially increase. One way to accommodate increased data traffic and provide high quality data communication services to end users is by utilizing network resources efficiently. This disclosure provides systems and methods for efficiently utilizing network resources by providing adaptive intelligence to data packet routing systems.
Abstract:
This disclosure relates to a system and method for routing data packets adaptively in a communication system. As the proliferation of data rich content and increasingly more capable mobile devices has continued, the amount of data communicated over mobile operator's networks can continue to exponentially increase. One way to accommodate increased data traffic and provide high quality data communication services to end users is by utilizing network resources efficiently. This disclosure provides systems and methods for efficiently utilizing network resources by providing adaptive intelligence to data packet routing systems.
Abstract:
Systems and methods are provided that allow network resources to be shared across geographical distances. This can be achieved by changing the resources available for establishing and handling call or data session processing in an area. A mobility management device can alone or in combination with a DNS server change the size or the resource pool available in some embodiments. The change in resources can be dynamic according to certain predefined conditions or can be setup beforehand to account for daily demand. This sharing of resources can allow more efficient usage of resources available across a geographic region, rather than needed to over-provision each region to account for peak demands.