摘要:
Aspects of a method and system for precise current matching in deep sub-micron technology may include adjusting a current mirror to compensate for MOSFET gate leakage currents by using feedback circuits. The feedback circuits may be implemented from active components to create active feedback circuits. If the reference current to be mirrored is noisy, a smoothing effect may be achieved by introducing a low-pass filter coupled to the current mirror design. The active feedback may comprise amplifiers, which may comprise one or more amplifier stages. The amplifier may amplify either a bias voltage error or a bias current error. Furthermore, a transimpedance amplifier may be utilized in the feedback loop. The output bias current of the current mirror may be stabilized dynamically during adjusting. Multiple current sources may be utilized in the current mirrors.
摘要:
Certain aspects of a method and system for mitigating effects of pulling in multiple phase locked loops in multi-standard systems may include selecting an input frequency range of operation at a voltage controlled oscillator based on a particular wireless band of operation in a system that handles a first wireless communication protocol and a second wireless communication protocol. An image rejection mixer may be enabled to generate an output signal for the particular wireless band of operation based on mixing a plurality of received signals within a selected frequency range. An in-phase (I) component and a quadrature (Q) component of the generated output signal may be generated by utilizing a RC-CR quadrature network.
摘要:
Certain aspects of a method and system for mitigating effects of pulling in multiple phase locked loops in multi-standard systems may include selecting an input frequency range of operation at a voltage controlled oscillator based on a particular wireless band of operation in a system that handles a first wireless communication protocol and a second wireless communication protocol. An image rejection mixer may be enabled to generate an output signal for the particular wireless band of operation based on mixing a plurality of received signals within a selected frequency range. An in-phase (I) component and a quadrature (Q) component of the generated output signal may be generated by utilizing a RC-CR quadrature network.
摘要:
Aspects of a method and system for signal processing are disclosed and may include using a frequency doubler to double the frequency of a reference signal utilized by a phase-frequency detector (PFD) in a fractional-N phase-locked-loop (PLL) synthesizer. Detecting and correcting a digital reference signal connected to the input of the frequency doubler. The digital reference signal may be generated by amplifying the difference between a low slew-rate reference signal and a reference voltage through a comparator. The reference voltage signal may be generated based on the detected duty-cycle of the digital reference signal. The duty-cycle of the digital reference signal may be adjusted by varying the generated reference voltage signal. The reference voltage may be generated by using difference of DC level of the digital reference signal and half rail. The reference voltage signal may be generated using a voltage digital-to-analog converter (DAC).
摘要:
Aspects of a method and system for precise current matching in deep sub-micron technology may include adjusting a current mirror to compensate for MOSFET gate leakage currents by using feedback circuits. The feedback circuits may be implemented from active components to create active feedback circuits. If the reference current to be mirrored is noisy, a smoothing effect may be achieved by introducing a low-pass filter coupled to the current mirror design. The active feedback may comprise amplifiers, which may comprise one or more amplifier stages. The amplifier may amplify either a bias voltage error or a bias current error. Furthermore, a transimpedance amplifier may be utilized in the feedback loop. The output bias current of the current mirror may be stabilized dynamically during adjusting. Multiple current sources may be utilized in the current mirrors.
摘要:
Certain aspects of a method and system for mitigating effects of pulling in multiple phase locked loops in multi-standard systems may include selecting an input frequency range of operation at a voltage controlled oscillator based on a particular wireless band of operation in a system that handles a first wireless communication protocol and a second wireless communication protocol. An image rejection mixer may be enabled to generate an output signal for the particular wireless band of operation based on mixing a plurality of received signals within a selected frequency range. An in-phase (I) component and a quadrature (Q) component of the generated output signal may be generated by utilizing a RC-CR quadrature network.
摘要:
Certain aspects of a method and system for mitigating effects of pulling in multiple phase locked loops in multi-standard systems may include selecting an input frequency range of operation at a voltage controlled oscillator based on a particular wireless band of operation in a system that handles a first wireless communication protocol and a second wireless communication protocol. An image rejection mixer may be enabled to generate an output signal for the particular wireless band of operation based on mixing a plurality of received signals within a selected frequency range. An in-phase (I) component and a quadrature (Q) component of the generated output signal may be generated by utilizing a RC-CR quadrature network.
摘要:
FIG. 1 is a perspective view of a drawing board set showing my new design; FIG. 2 is another perspective view thereof; FIG. 3 is a front elevational view thereof; FIG. 4 is a rear elevational view thereof; FIG. 5 is a left side elevational view thereof; FIG. 6 is a right side elevational view thereof; FIG. 7 is a top plan view thereof; FIG. 8 is a bottom plan view thereof; FIG. 9 is a perspective view of the drawing board set where the drawing board set is in a first configuration of use; FIG. 10 is a perspective view of the drawing board set where the drawing board set is in a second configuration of use; FIG. 11 is a perspective view of the drawing board set where the drawings board set is in a storage state; and, FIG. 12 is an enlarged view of portion 12 shown in FIG. 1. The dash-dash broken lines in FIGS. 1-6 illustrates portions of the drawing board set that form no part of the claimed design. The dash-dash broken lines in FIGS. 9 and 11 illustrating drawing boards depict environment that form no part of the claimed design. The dot-dash broken lines represent boundaries of the enlarged portion and form no part of the claimed design.
摘要:
A down conversion module includes a mixer operable to down convert an amplified receive signal from a low noise amplifier, based on a local oscillation, to produce a mixer output signal. A mixer load section is operable to produce a down converted signal from mixer output at an output of the mixer load section. A direct current (DC) offset cancellation module is operable to measure a DC offset at the output of the mixer load section, to generate cancellation currents and to combine the cancellation currents with the mixer output signal to provide DC offset cancellation.
摘要:
Aspects of a method and system for a fast phase-locked loop (PLL) close-loop settling after an open-loop voltage controlled oscillator (VCO) calibration are provided. A fractional-N PLL synthesizer may comprise a VCO, a phase-frequency detector (PFD), a D flip-flop, a divider, a charge pump, and a loop filter. The synthesizer may disable the PFD based on a control signal indicating the start of VCO open-loop calibration. After open-loop calibration, the synthesizer may subsequently enable a PLL closed-loop settling and may enable the PFD to control the charge pump when the input reference signal phase lags a phase of a divider signal generated by the divider. The D flip-flop may enable and disable the PFD. During open-loop calibration, the loop filter may be discharged via a leakage current in the charge pump. During closed-loop settling, the loop filter may be charged by the charge pump via control of the PFD.