摘要:
A process for fabricating a memory cell in a two-bit EEPROM device, the process includes forming an ONO layer overlying a semiconductor substrate, depositing a hard mask overlying the ONO layer, and patterning the hard mask. Preferably, the hard mask includes a material selected from the group consisting of tungsten, titanium, titanium nitride, polysilicon, silicon, silicon nitride, silicon oxi-nitride, and silicon rich nitride. In one preferred embodiment, the process further includes implanting the semiconductor substrate with a p-type dopant at an angle substantially normal to the principal surface of the semiconductor substrate and annealing the semiconductor substrate upon implanting the semiconductor substrate with a p-type dopant. In one preferred embodiment, the process further includes implanting the semiconductor substrate with an n-type dopant.
摘要:
A process for fabricating a memory cell in a two-bit EEPROM device including forming an ONO layer overlying a semiconductor substrate, depositing a hard mask overlying the ONO layer, and patterning the hard mask. The hard mask is preferably made from polysilicon or silicon. The process further includes doping the semiconductor substrate with boron causing p-type regions to form in the semiconductor substrate, and doping the semiconductor substrate with n-type dopants, such as arsenic, causing n-type regions to form in the semiconductor substrate. The exposed ONO layer is then etched to expose part of the semiconductor substrate, and a bit-line oxide region is formed overlying the semiconductor substrate. The hard mask is then removed, preferably using a plasma etch process.
摘要:
A process for fabricating a memory cell in a two-bit EEPROM device including forming an ONO layer overlying a semiconductor substrate, depositing a hard mask overlying the ONO layer, and patterning the hard mask. The hard mask is made from tungsten, titanium, or titanium nitride. The process further includes doping the semiconductor substrate with boron causing p-type regions to form in the semiconductor substrate, and doping the semiconductor substrate with n-type dopants, such as arsenic, causing n-type regions to form in the semiconductor substrate. The exposed ONO layer is then etched to expose part of the semiconductor substrate, and a bit-line oxide region is formed overlying the semiconductor substrate. The hard mask is then stripped, preferably using an H2O2 solution.
摘要翻译:一种用于在二位EEPROM器件中制造存储单元的方法,包括形成覆盖在半导体衬底上的ONO层,沉积覆盖在ONO层上的硬掩模,以及对该硬掩模进行构图。 硬掩模由钨,钛或氮化钛制成。 该工艺还包括用硼掺杂导致在半导体衬底中形成p型区域的半导体衬底,并且用诸如砷的n型掺杂剂掺杂半导体衬底,从而在半导体衬底中形成n型区域。 然后对暴露的ONO层进行蚀刻以暴露半导体衬底的一部分,并且在半导体衬底上形成位线氧化物区域。 然后将硬掩模剥离,优选使用H 2 O 2溶液。
摘要:
A provider-patient encounter device delivers medical information and services by receiving content from context sponsors, linking the content to service codes and presenting the content to providers. The service codes represent medical procedure codes and medical diagnosis codes. Each service code includes a provider demographic code, a service priority code, and a supplemental service code. The provider-patient encounter device presents a selectable list of service codes and presents content from a context sponsor assigned to a service code when the provider selects the service code from the selectable list of service codes.
摘要:
A provider-patient encounter device delivers medical information and services by receiving content from context sponsors, linking the content to service codes and presenting the content to providers. The service codes represent medical procedure codes and medical diagnosis codes. Each service code includes a provider demographic code, a service priority code, and a supplemental service code. The provider-patient encounter device presents a selectable list of service codes and presents content from a context sponsor assigned to a service code when the provider selects the service code from the selectable list of service codes.
摘要:
A provider-patient encounter device delivers medical information and services by receiving content from context sponsors, linking the content to service codes and presenting the content to providers. The service codes represent medical procedure codes and medical diagnosis codes. Each service code includes a provider demographic code, a service priority code, and a supplemental service code. The provider-patient encounter device presents a selectable list of service codes and presents content from a context sponsor assigned to a service code when the provider selects the service code from the selectable list of service codes.