摘要:
The present invention provides methods of administering an insulinotropic peptide in an amount effective to treat a disorder or condition while reducing nausea side effect by administering to a subject in need thereof an insulinotropic peptide conjugated to albumin. The present invention also provides methods of selecting a subject for administration of a conjugated insulinotropic peptide. Exemplary disorders or conditions treatable with an insulinotropic peptide include obesity and type II diabetes.
摘要:
The present invention relates to an insulin derivative comprising an insulin molecule and a reactive group for covalently bonding a blood component, wherein preferably the insulin molecule is human natural insulin molecule and the reactive group is coupled to an amino acid of the insulin molecule at a position selected from the positions Gly A1, Phe B1 and Lys B29.
摘要:
A method for protecting a peptide from peptidase activity in vivo, the peptide being composed of between 2 and 50 amino acids and having a C-terminus and an N-terminus and a C-terminus amino acid and an N-terminus amino acid is described. In the first step of the method, the peptide is modified by attaching a reactive group to the C-terminus amino acid, to the N-terminus amino acid, or to an amino acid located between the N-terminus and the C-terminus, such that the modified peptide is capable of forming a covalent bond in vivo with a reactive functionality on a blood component. In the next step, a covalent bond is formed between the reactive group and a reactive functionality on a blood component to form a peptide-blood component conjugate, thereby protecting said peptide from peptidase activity. The final step of the method involves the analyzing of the stability of the peptide-blood component conjugate to assess the protection of the peptide from peptidase activity.
摘要:
This invention relates to glucagon-like peptide 2 (GLP-2) derivatives. In particular, this invention relates to GLP-2 peptide derivatives having an extended in vivo half-life, for the treatment or prevention of gastrointestinal disorders or diseases such as inflammatory bowel disease and other gastrointestinal functions, from any segment of the gastrointestinal tract, from the oesophagus to the anus.
摘要:
Modified anti-angiogenic peptides are disclosed. The modified peptides are capable of forming a peptidase stabilized anti-angiogenic peptide. The modified anti-angiogenic peptides, particularly modified kringle 5 peptides are capable of forming a conjugate with a blood protein. Conjugates are prepared from anti-angiogenic peptides, particularly kringle 5 peptides, by combining the peptide with a reactive functional group with a blood protein. The conjugates may be formed in vivo or ex vivo. The conjugates are administered to patients to provide an anti-angiogenic effect.
摘要:
The present invention relates to a compound comprising a PYY peptide or a functional derivative thereof, which is coupled to a reactive group. Such a reactive group is capable of reacting on a blood component so as to form a stable covalent bond therewith. The present invention also relates to a conjugate comprising such a compound which is covalently bonded to a blood component. Moreover, the invention also relates to a method of enhancing, in a patient, the anti-obesity activity of a PYY peptide or functional derivative thereof.
摘要:
The present invention discloses novel compounds useful as alkaline phosphatase inhibitors and therapeutic agents. Preferably, the novel compounds are useful as selective inhibitors of human alkaline phosphatases as opposed to Escherichia coli alkaline phosphatases. The novel compounds can also be used as cancer therapeutic agents, anti-depressive agents, anti-anergic agents, and antihelminthic agents. The novel compounds have the following general formula: ##STR1## wherein R' is an aryl, aryl ether, aryl thioether, aromatic heterocyclic, aromatic heterocyclic thioether, or aromatic heterocyclic ether group. More preferably, R' is a phenyl or a pyridine. Most preferably, R' is of the following formula: ##STR2## 2-thiopyridine, or ##STR3## 2-oxypyridine. R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.1 ', R.sub.2 ', R.sub.3 ', R.sub.4 ', and R.sub.5 ' can be the same or different, and at least one of which is selected from the group consisting of: H, C.sub.1 -C.sub.6 alkyl, halo C.sub.1 -C.sub.6 alkyl, phenyl, C.sub.1 -C.sub.6 alkoxy, phenoxy, trifluoromethyl, nitro, amino, carboxy, and halo groups with the proviso that each novel compound has no more than three substituents. Hydrogen is not considered a substituent.
摘要:
Modified insulinotropic peptides are disclosed. The modified insulinotropic peptides are capable of forming a peptidase stabilized insulinotropic peptide. The modified insulinotropic peptides are capable of forming covalent bonds with one or more blood components to form a conjugate. The conjugates may be formed in vivo or ex vivo. The modified peptides are administered to treat humans with diabetes and other related diseases.
摘要:
This invention relates to long lasting natriuretic peptide (NP) derivatives. The NP derivative has a NP peptide and a reactive entity coupled to the NP peptide. The reactive entity is able to covalently bond with a functionality on a blood component. In particular, this invention relates to NP derivatives having an extended in vivo half-life, and method for the treatment of cardiovascular diseases and disorders such as acute decompensated congestive heart failure (CHF) and chronic CHF.
摘要:
Methods and compositions are provided for identifying compounds having affinity or complementarity to a target molecule. Compounds according to the invention may be described by the formula E-Ca—R—Cb-A, wherein E is a therapeutic or diagnostic agent, R is a reactive group, Ca and Cb are connector groups between E and R and between R and A, respectively, and A is a group having an affinity for human serum albumin, wherein affinity group A comprises a sequence of amino acid residues —O1—O2—X1—X2—B in which the amino acid residues are independently selected from the group of all twenty naturally occurring amino acids. Compounds according to the invention may be used for labeling the target molecule, particularly where the target molecule is naturally found in a complex mixture, such as a physiological fluid, like blood. By affinity labeling in vivo, the lifetime of physiologically active entities can be greatly enhanced by becoming bound to long-lived blood components. The covalently bound entity may also serve as an antagonist or agonist of a particular binding protein or as an enzyme inhibitor.