Abstract:
An electronically switchable, bi-stable two-port valve includes a sleeve, a first pole piece having air flow passages formed therethrough and a first wire-wound coil mounted therein and connected to a source of electrical power, a second pole piece having air flow passages formed therethrough and a second wire-wound coil mounted therein and connected to the source of electrical power, and a permanent magnet defining an armature and movably mounted between the first and second pole pieces. The first pole piece is mounted in a first end of the sleeve and the second pole piece is mounted in a second end of the sleeve.
Abstract:
A microvalve includes a first plate having a surface defining an actuator cavity. A second plate has a surface that abuts the surface of the first plate and includes a displaceable member that is disposed within the actuator cavity for movement between a closed position, wherein the displaceable member prevents fluid communication through the microvalve, and an opened position, wherein the displaceable member does not prevent fluid communication through the microvalve. An actuator is connected to the displaceable member and has only one or two pairs of actuator ribs.
Abstract:
A manifold assembly is configured to calibrate and test one or more superheat controllers and includes a manifold frame, a manifold having a plurality of fluid conduits mounted to the manifold frame, and a plurality of superheat controller fittings mounted to the fluid conduits, each superheat controller fitting configured to have a superheat controller attached thereto.
Abstract:
A microvalve includes a first plate having an inner surface, a recessed region provided within the inner surface, a normally open fluid port and a normally closed fluid port provided within the recessed region. A first sealing structure extends about the normally open fluid port, and a second sealing structure extends about the normally closed fluid port. A second plate defines a non-movable portion and a movable portion. A surface of the non-movable portion abuts the inner surface of the first plate, the non-movable portion having an opening formed therethrough. The movable portion is formed within the opening, has an axis, and defines a displaceable member connected to the non-movable portion by a convoluted spring formed in the opening. The displaceable member is slidingly and axially movable within the opening between a first position, wherein the displaceable member cooperates with the second sealing structure to prevent fluid communication through the normally closed fluid port, and a second position, wherein the displaceable member does not cooperate with at least a portion of the second sealing structure to prevent fluid communication through the normally closed fluid port.
Abstract:
A microvalve includes a displaceable member having an elongated arm portion, a plurality of actuator ribs connected through a central spine to the elongated arm portion, and a hinge portion. Each of the actuator ribs has a first portion and a second portion, the first portions each having an end connected to the central spine, the second portions each having an end connected to the central spine. A channel is formed in the plate. A plurality of elongated openings is formed in the plate and define the actuator ribs, each elongated opening having longitudinally extending side edges. One of the elongated openings separates each rib in the second portion of ribs from an adjacent rib or the plate. The channel and a longitudinally extending side edge of one of the elongated openings separate the second portion of the actuator ribs from the plate and define an electrical isolation region.
Abstract:
A microvalve includes a first plate having a surface, a recessed region provided within the surface, a fluid port provided within the recessed region, and a sealing structure extending about the fluid port. A second plate defines a non-movable portion and a movable portion, a surface of the non-movable portion abutting the surface of the first plate, the non-movable portion having first and second openings formed therethrough. The movable portion is formed within the first opening and has an axis, the movable portion defining a displaceable member connected to the non-movable portion by a convoluted spring formed in a second opening. The displaceable member is slidingly and axially movable within the first opening between a closed position, wherein the displaceable member cooperates with the sealing structure to prevent fluid communication through the fluid port, and an opened position, wherein the displaceable member does not cooperate with at least a portion of the sealing structure to prevent fluid communication through the fluid port.
Abstract:
A spool assembly configured for use in a two-stage proportional control valve in a fluid system includes a substantially cylindrical sleeve having an axially extending sleeve bore extending from an open first end to an open second end. A spool includes a spool bore that extends from an open first axial end to a closed second axial end and is slidably mounted within the sleeve bore. The spool further includes a first circumferentially extending groove defining a fluid flow path, a second circumferentially extending groove formed near a first end thereof, a third circumferentially extending groove formed near the second axial end thereof, a circumferentially extending pressure groove formed therein between the second axial end and the third circumferentially extending groove, and first, second, and third transverse fluid passageways formed through a side wall of the spool.
Abstract:
A two-stage proportional control valve configured for use in a fluid system includes a valve body having a longitudinally extending valve body bore formed therethrough. A first stage microvalve is mounted within the valve body bore, and a second stage spool assembly is mounted within the valve body bore downstream of the microvalve. The second stage spool assembly includes a sleeve and a spool slidably mounted within the sleeve.
Abstract:
A method of calibrating a plurality of superheat controllers includes attaching a plurality of superheat controllers to a manifold assembly, enclosing the manifold assembly within an environmental chamber, and simultaneously calibrating a pressure sensor within each of the plurality of superheat controllers.
Abstract:
A plate is adapted for use in a microvalve and includes a displaceable member configured for movement between a closed position, wherein the displaceable member prevents fluid communication through the microvalve, and an opened position, wherein the displaceable member does not prevent fluid communication through the microvalve. The displaceable member includes an elongated arm portion, a plurality of actuator ribs connected through a central spine to the elongated arm portion, and a hinge portion. The actuator ribs have a first portion and a second portion, the first portion having a first end and a second end, the second end of the first portion connected to the central spine, the second portion having a first end and a second end, the second end of the second portion connected to the central spine. A channel is formed in the plate. A plurality of elongated openings are formed in the plate and define the actuator ribs, each elongated opening having longitudinally extending side edges. One of the elongated openings separates each rib in the second portion of ribs from an adjacent rib or the plate. The channel and a longitudinally extending side edge of one of the elongated openings separate the second portion of the actuator ribs from the plate and define an electrical isolation region.