Abstract:
Disclosed herein are devices for improving coaption of the mitral valve leaflets to reduce or eliminate mitral valve regurgitation. The devices may be used to perform mitral valve annuloplasty, or to serve as a docking station for a transcatheter prosthetic heart valve. The various embodiments of devices are configured for percutaneous and, in some cases, transvascular delivery. Delivery systems useful for routing the devices to the mitral valve are also disclosed, including catheters, balloons and/or mechanical expansion systems. The devices themselves include at least one tissue penetrating member. Methods of delivery include partially embedding the devices in the mitral valve annulus via at least one tissue penetrating member. Tissue penetrating members may be embedded into the tissue in a simultaneous or a nearly simultaneous fashion. Upon embedding, the devices employ various expansion and/or contraction features to adjust the mitral valve diameter. Adjustments may continue until the leaflets fully coapt and the problem of mitral regurgitation is reduced or eliminated.
Abstract:
Disclosed herein are devices for improving coaption of the mitral valve leaflets to reduce or eliminate mitral valve regurgitation. The devices may be used to perform mitral valve annuloplasty, or to serve as a docking station for a transcatheter prosthetic heart valve. The various embodiments of devices are configured for percutaneous and, in some cases, transvascular delivery. Delivery systems useful for routing the devices to the mitral valve are also disclosed, including catheters, balloons and/or mechanical expansion systems. The devices themselves include at least one tissue penetrating member. Methods of delivery include partially embedding the devices in the mitral valve annulus via at least one tissue penetrating member. Tissue penetrating members may be embedded into the tissue in a simultaneous or a nearly simultaneous fashion. Upon embedding, the devices employ various expansion and/or contraction features to adjust the mitral valve diameter. Adjustments may continue until the leaflets fully coapt and the problem of mitral regurgitation is reduced or eliminated.
Abstract:
Disclosed herein are devices for improving coaption of the mitral valve leaflets to reduce or eliminate mitral valve regurgitation. The devices may be used to perform mitral valve annuloplasty, or to serve as a docking station for a transcatheter prosthetic heart valve. The various embodiments of devices are configured for percutaneous and, in some cases, transvascular delivery. Delivery systems useful for routing the devices to the mitral valve are also disclosed, including catheters, balloons and/or mechanical expansion systems. The devices themselves include at least one tissue penetrating member. Methods of delivery include partially embedding the devices in the mitral valve annulus via at least one tissue penetrating member. Tissue penetrating members may be embedded into the tissue in a simultaneous or a nearly simultaneous fashion. Upon embedding, the devices employ various expansion and/or contraction features to adjust the mitral valve diameter. Adjustments may continue until the leaflets fully coapt and the problem of mitral regurgitation is reduced or eliminated.
Abstract:
Certain aspects of the disclosure concern a device for repairing or replacing a native heart valve. The device can include a frame including a first set of struts intersecting with a second set of struts at a plurality of strut connection points. The frame can be radially expandable from a radially collapsed state to a radially expanded state. The device can include at least one expansion feature including a screw head and a screw shaft connected to the screw head. The screw shaft can extend through a first strut connection point and a second strut connection point. The device can further include a plurality of penetrating members extending from a first end of the frame. Rotating the screw shaft in a first direction can radially expand the frame from the radially collapsed state to the radially expanded state.
Abstract:
Certain aspects of the disclosure concern a device for repairing or replacing a native heart valve. The device can include a frame including a first set of struts intersecting with a second set of struts at a plurality of strut connection points. The frame can be radially expandable from a radially collapsed state to a radially expanded state. The device can include at least one expansion feature including a screw head and a screw shaft connected to the screw head. The screw shaft can extend through a first strut connection point and a second strut connection point. The device can further include a plurality of penetrating members extending from a first end of the frame. Rotating the screw shaft in a first direction can radially expand the frame from the radially collapsed state to the radially expanded state.
Abstract:
Systems, apparatuses, and methods disclosed herein may be directed to clips for medical implementation, including clips for a portion of a heart. The clips may be configured to close the portion of the heart, to reduce blood flow therethrough as well as passage of clots or other undesired materials. In examples, the clips may be configured to close the left atrial appendage (LAA). The closure of the LAA may reduce the possibility of stroke or other maladies stemming from fluid flow with the LAA. In examples, the clips may be positioned exterior of the LAA, to extend over an outer surface of the LAA for closure.
Abstract:
Devices, systems and methods are described herein to provide improved treatment of a tricuspid valve. Such treatment may include tricuspid valve replacement, which may include providing a prosthetic tricuspid valve within the tricuspid valve annulus. Delivery systems for delivering the prosthetic tricuspid valve to the tricuspid valve annulus are disclosed herein. Treatment may also include repair of the tricuspid valve.
Abstract:
Disclosed herein are devices for improving coaption of the mitral valve leaflets to reduce or eliminate mitral valve regurgitation. The devices may be used to perform mitral valve annuloplasty, or to serve as a docking station for a transcatheter prosthetic heart valve. The various embodiments of devices are configured for percutaneous and, in some cases, transvascular delivery. Delivery systems useful for routing the devices to the mitral valve are also disclosed, including catheters, balloons and/or mechanical expansion systems. The devices themselves include at least one tissue penetrating member. Methods of delivery include partially embedding the devices in the mitral valve annulus via at least one tissue penetrating member. Tissue penetrating members may be embedded into the tissue in a simultaneous or a nearly simultaneous fashion. Upon embedding, the devices employ various expansion and/or contraction features to adjust the mitral valve diameter. Adjustments may continue until the leaflets fully coapt and the problem of mitral regurgitation is reduced or eliminated.