Abstract:
A transmitting and receiving apparatus using a wavelength-tunable filter according to an exemplary embodiment may include: a filter to generate a filtered optical-reception signal by passing only an allowed-to-be-passed wavelength by using Bragg grating filter; a wavelength setter to set the allowed-to-be-passed wavelength of the filter; and a photoelectric converter to perform photoelectric conversion on the filtered optical-reception signal into an electrical signal.
Abstract:
The present disclosure provides a digital unit including: one or more remote apparatus communicators configured to correspond to each of one or more remote apparatuses to process transmitted and received data; a multi-wavelength controller configured to convert data transmitted from each of the one or more remote apparatuses into a wavelength allocated thereto and to transmit the converted data to remote apparatuses via an optical fiber; and a base station controller configured to allocate transmission and reception wavelength to each of the one or more remote apparatus communicators to control the multi-wavelength controller and to transmit wavelength information associated with the wavelength allocation to each of the one or more remote apparatuses.
Abstract:
An interface for transmitting a high-speed signal and an optical module including the same. The interface may include a main substrate and a sub-substrate. The main substrate may have at least one high-speed signal line formed on the upper surface of the main substrate. The sub-substrate may have a first conductive line formed on the lower surface thereof so as to adjust high-speed signal transmission characteristics of the high-speed signal line, wherein the first conductive line may be coupled to the upper surface of the main substrate and partially overlap with the high-speed signal line.
Abstract:
A board assembly for transmitting a high-speed signal and a method of manufacturing the same. The board assembly may include a submount board, a base board, and a contact member for a signal line. The submount board may include at least one first high-speed signal line formed on the surface thereof. The base board may include the submount board on one part of the upper surface thereof, and at least second high-speed signal line on the other part of the upper surface thereof, wherein the second high-speed signal lines corresponds to the first high-speed signal lines, respectively. The contact member for the signal line may be installed on the side of the submount board, and have an upper portion contacting the first high-speed signal line and a lower portion contacting the second high-speed signal line such that the first high-speed signal line contacts the second high-speed signal line.
Abstract:
A method for measuring a wavelength channel tuning time by using an optical filter that converts a change of an output wavelength of a tunable device into an optical intensity change, and a system thereof. The system for measuring a wavelength channel tuning time includes: an optical filter set configured to convert a wavelength change of an optical tunable device into an optical output intensity change; at least one or more optical electric converters configured to convert the optical output intensity change output by the optical filter set into an electric signal; and a controller configured to generate a wavelength change command applied to the tunable device, so as to calculate a wavelength channel tuning time of the tunable device by using the wavelength change command and the electric signal output by the optical electric converter.