Abstract:
Disclosed are a terahertz signal generation apparatus and a terahertz signal generation method using the same. The terahertz signal generation apparatus includes first and second resonators configured to respectively output an optical signal of a first resonant frequency and an optical signal of a second resonant frequency from an optical signal input through a gain medium, an optical modulator configured to optically modulate the output optical signal of the second resonant frequency, an optical combiner configured to combine the CW optical signal of the first resonant frequency and the modulated optical signal of the second resonant frequency, and a signal generator configured to generate a terahertz signal using heterodyne beating between the CW optical signal of the first resonant frequency and the modulated optical signal of the second resonant frequency, wherein the first resonant frequency and the second resonant frequency are processed to have a predetermined frequency difference.
Abstract:
A method and apparatus for image compression using a latent variable are provided. The multiple components of the latent variable may be sorted in order of importance. Through sorting, when the feature information of only some of the multiple components is used, the quality of a reconstructed image may be improved. In order to generate a latent variable, the components of which are sorted in order of importance, learning may be performed in various manners. Also, less important information may be eliminated from the latent variable, and processing, such as quantization, may be applied to the latent variable. Through elimination and processing, the amount of data for the latent variable may be reduced.
Abstract:
Disclosed herein are a method and apparatus for video decoding and a method and apparatus for video encoding. A prediction block for a target block is generated by predicting the target block using a prediction network, and a reconstructed block for the target block is generated based on the prediction block and a reconstructed residual block. The prediction network includes an intra-prediction network and an inter-prediction network and uses a spatial reference block and/or a temporal reference block when it performs prediction. For learning in the prediction network, a loss function is defined, and learning in the prediction network is performed based on the loss function.
Abstract:
A method and apparatus for adjusting a modulation index of an analog optical signal using an interference phenomenon of a coherent light, the method including dividing an analog optical signal for a first path and a second path, extracting an optical carrier from an analog optical signal divided for the first path, controlling an intensity and a phase of the optical carrier, and controlling a modulation index of the analog optical signal by combining an analog optical signal divided for the second path and the optical carrier of which the intensity and the phase are controlled.
Abstract:
Disclosed herein are a method and apparatus for compressing learning parameters for training of a deep-learning model and transmitting the compressed parameters in a distributed processing environment. Multiple electronic devices in the distributed processing system perform training of a neural network. By performing training, parameters are updated. The electronic device may share the updated parameter thereof with additional electronic devices. In order to efficiently share the parameter, the residual of the parameter is provided to the additional electronic devices. When the residual of the parameter is provided, the additional electronic devices update the parameter using the residual of the parameter.
Abstract:
Disclosed herein are a video decoding method and apparatus and a video encoding method and apparatus, and more particularly, a method and apparatus for performing filtering in video encoding and decoding. An encoding apparatus may perform filtering on a target, and may generate filtering information indicating whether filtering has been performed on the target. Further, the encoding apparatus may generate a bitstream including filtering information. A decoding apparatus may determine, based on filtering information, whether to perform filtering on a target, and may perform filtering on the target. The decoding apparatus may receive filtering information from the encoding apparatus through a bitstream or may derive filtering information using additional information.
Abstract:
Disclosed herein is a context-adaptive entropy model for end-to-end optimized image compression. The entropy model exploits two types of contexts. The two types of contexts are a bit-consuming context and a bit-free context, respectively, and these contexts are classified depending on the corresponding context requires the allocation of additional bits. Based on these contexts, the entropy model may more accurately estimate the distribution of each latent representation using a more generalized form of entropy models, thus improving compression performance.
Abstract:
A transmission performance monitoring method for monitoring a transmission performance based on an analog optical link and an apparatus performing the method. The transmission performance monitoring method and apparatus centrally monitor an RF signal transmission performance in an analog optical link-based mobile haul or indoor distributed antenna system.
Abstract:
An apparatus and method for skipping fractional motion estimation (FME) in high efficiency video coding (HEVC) are disclosed. The apparatus includes a current sum of absolute differences (SAD) acquisition unit, a redundancy determination unit, and a motion estimation skip unit. The SAD acquisition unit acquires the SAD from an integer motion estimation (IME) unit when the IME unit performs IME on a coding tree block (CTB). The redundancy determination unit determines whether or not the CTB is an estimated redundant block using the current SAD. The motion estimation skip unit provides an FME unit with an FME skip signal of the CTB depending on whether or the CTB is an estimated redundant block.
Abstract:
An orthogonal frequency division multiple access-passive optical network including a plurality of optical network units each configured to generate orthogonal frequency division multiplexed signals, which are allocated thereto, based on a central frequency for frequency division multiplexing that is allocated in advance, and to use the generated signals in upstream transmission.