Abstract:
A magnetic marker for marking a site in tissue in the body. In one embodiment, the marker comprises a magnetic metallic glass. In another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 9. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 6. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 3.
Abstract:
A magnetic marker for marking a site in tissue in the body. In one embodiment, the marker comprises a magnetic metallic glass. In another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 9. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 6. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 3.
Abstract:
A magnetic marker for marking a site in tissue in the body. In one embodiment, the marker comprises a magnetic metallic glass. In another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 9. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 6. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 3.
Abstract:
A magnetic marker for marking a site in tissue in the body. In one embodiment, the marker comprises a magnetic metallic glass. In another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 9. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 6. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 3.
Abstract:
A magnetic marker for marking a site in tissue in the body. In one embodiment, the marker comprises a magnetic metallic glass. In another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 9. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 6. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 3.
Abstract:
A method and apparatus for preparing tissue of interest in a patient for possible excision by surgery. In one embodiment, the method comprises the steps of: removing a biopsy sample from the tissue of interest; placing a magnetic marker at the biopsy site; performing a pathology analysis of the biopsy sample; and if the pathology analysis indicates that the tissue of interest should be removed, locating the tissue for surgery using a magnetic detection probe. In one embodiment, the marker comprises magnetic nanoparticles in a bioabsorbable matrix. A system for preparing tissue of interest in a patient for possible excision by surgery. In one embodiment, the system includes a magnetic marker and magnetic detection probe system.
Abstract:
A method and apparatus for preparing tissue of interest in a patient for possible excision by surgery. In one embodiment, the method comprises the steps of: removing a biopsy sample from the tissue of interest; placing a magnetic marker at the biopsy site; performing a pathology analysis of the biopsy sample; and if the pathology analysis indicates that the tissue of interest should be removed, locating the tissue for surgery using a magnetic detection probe. In one embodiment, the marker comprises magnetic nanoparticles in a bioabsorbable matrix. A system for preparing tissue of interest in a patient for possible excision by surgery. In one embodiment, the system includes a magnetic marker and magnetic detection probe system.
Abstract:
A multicore magnetic particle. In one embodiment, the magnetic particle includes a plurality of superparmagnetic cores embedded in a non-magnetic matrix. In another embodiment, the effective anisotropy energy barrier of the particle is larger than the sum of the anisotropy energy barriers of the individual superparamagnetic cores. In yet another embodiment, the superparamagnetic cores are close enough to interact magnetically by exchange coupling and dipole interaction. In still yet another embodiment, the specific loss power of the magnetic particle is greater than the specific loss power of an equivalent mass of individual superparamagnetic cores.
Abstract:
A magnetic marker for marking a site in tissue in the body. In one embodiment, the marker comprises a magnetic metallic glass. In another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 9. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 6. In yet another embodiment, the marker is in a non-spherical configuration having an anisotropy ratio less than 3.