Abstract:
The present disclosure relates to conveyor lubricant compositions including an emulsion. The present disclosure also relates to methods of employing such lubricant compositions. In an embodiment, the methods include applying the present lubricant composition to a conveyor with a non-energized nozzle. In an embodiment, the methods include applying the present lubricant composition in a “semi-dry” mode.
Abstract:
The present disclosure relates to conveyor lubricant compositions including an emulsion. The present disclosure also relates to methods of employing such lubricant compositions. In an embodiment, the methods include applying the present lubricant composition to a conveyor with a non-energized nozzle. In an embodiment, the methods include applying the present lubricant composition in a “semi-dry” mode.
Abstract:
The present disclosure relates to conveyor lubricant compositions including an emulsion. The present disclosure also relates to methods of employing such lubricant compositions. In an embodiment, the methods include applying the present lubricant composition to a conveyor with a non-energized nozzle. In an embodiment, the methods include applying the present lubricant composition in a “semi-dry” mode.
Abstract:
A filtration-free liquid sampling system may be used to extract particulate or debris-containing liquid samples that may otherwise plug a filter over its service life. For example, such a system may be used to extract liquid sample from an industrial textile washer to monitor and/or validate the quality of wash conditions within the washer. In some examples, the system includes a pump that creates a vacuum on a backstroke, drawing liquid into a sensor housing positioned between the pump and the washer. After holding the liquid in the sensor housing long enough to measure its properties, the pump can be driven in a reverse stroke to pressurize the contents in the sensor housing and force the liquid back into the washer. This vacuum fill/pressure purge can keep the sensor housing free of debris.
Abstract:
The present disclosure relates to conveyor lubricant compositions including an emulsion. The present disclosure also relates to methods of employing such lubricant compositions. In an embodiment, the methods include applying the present lubricant composition to a conveyor with a non-energized nozzle. In an embodiment, the methods include applying the present lubricant composition in a “semi-dry” mode.
Abstract:
A filtration-free liquid sampling system may be used to extract particulate or debris-containing liquid samples that may otherwise plug a filter over its service life. For example, such a system may be used to extract liquid sample from an industrial textile washer to monitor and/or validate the quality of wash conditions within the washer. In some examples, the system includes a pump that creates a vacuum on a backstroke, drawing liquid into a sensor housing positioned between the pump and the washer. After holding the liquid in the sensor housing long enough to measure its properties, the pump can be driven in a reverse stroke to pressurize the contents in the sensor housing and force the liquid back into the washer. This vacuum fill/pressure purge can keep the sensor housing free of debris.
Abstract:
A filtration-free liquid sampling system may be used to extract particulate or debris-containing liquid samples that may otherwise plug a filter over its service life. For example, such a system may be used to extract liquid sample from an industrial textile washer to monitor and/or validate the quality of wash conditions within the washer. In some examples, the system includes a pump that creates a vacuum on a backstroke, drawing liquid into a sensor housing positioned between the pump and the washer. After holding the liquid in the sensor housing long enough to measure its properties, the pump can be driven in a reverse stroke to pressurize the contents in the sensor housing and force the liquid back into the washer. This vacuum fill/pressure purge can keep the sensor housing free of debris.
Abstract:
A filtration-free liquid sampling system may be used to extract particulate or debris-containing liquid samples that may otherwise plug a filter over its service life. For example, such a system may be used to extract liquid sample from an industrial textile washer to monitor and/or validate the quality of wash conditions within the washer. In some examples, the system includes a pump that creates a vacuum on a backstroke, drawing liquid into a sensor housing positioned between the pump and the washer. After holding the liquid in the sensor housing long enough to measure its properties, the pump can be driven in a reverse stroke to pressurize the contents in the sensor housing and force the liquid back into the washer. This vacuum fill/pressure purge can keep the sensor housing free of debris.
Abstract:
The present disclosure relates to conveyor lubricant compositions including an emulsion. The present disclosure also relates to methods of employing such lubricant compositions. In an embodiment, the methods include applying the present lubricant composition to a conveyor with a non-energized nozzle. In an embodiment, the methods include applying the present lubricant composition in a “semi-dry” mode.
Abstract:
The present disclosure relates to conveyor lubricant compositions including an emulsion. The present disclosure also relates to methods of employing such lubricant compositions. In an embodiment, the methods include applying the present lubricant composition to a conveyor with a non-energized nozzle. In an embodiment, the methods include applying the present lubricant composition in a “semi-dry” mode.