Abstract:
A variable mode X-ray transmission system is provided that can be operated in low or high dose rate modes depending upon the area or portion of the vehicle to be screened. In one embodiment, variable dose rate is achieved by use of a novel collimator. The systems disclosed in this application enable the scanning of a vehicle cab portion (occupied by people, such as a driver) at low dose rate, which is safe for human beings, while allowing the scanning of the cargo portion (unoccupied by people) at a high dose rate. Rapid switching from low dose rate to high dose rate operating mode is provided, while striking a balance between high material penetration for cargo portion and low intensity exposure that is safe for occupants in the cab portion of the inspected vehicle.
Abstract:
A drive-through scanning system comprises a radiation generating system arranged to generate radiation at two different energy levels and direct the radiation towards a scanning volume, detectors arranged to detect the radiation after it has passed through the scanning volume, and a controller arranged to identify a part of a vehicle within the scanning volume, to allocate the part of the vehicle to one of several categories, and to control the radiation generating system and to select one or more of the energy levels depending on the category to which the part of the vehicle is allocated.
Abstract:
The present specification discloses a covert mobile inspection vehicle with a backscatter X-ray scanning system that has an X-ray source and detectors for obtaining a radiographic image of an object outside the vehicle. The systems preferably include at least one sensor for determining a distance from at least one of the detectors to points on the surface of the object being scanned, a processor for processing the obtained radiographic image by using the determined distance of the object to obtain an atomic number of each material contained in the object, and one or more sensors to obtain surveillance data from a predefined area surrounding the vehicle.
Abstract:
This specification discloses methods and systems for generating a stereo image of an object that is positioned within an imaging volume. The object is positioned within the imaging volume. Two stationary X-ray source points are selected and activated. X-rays from both stationary X-ray source points are transmitted through the object being scanned and detected using detector elements positioned across the imaging volume and opposite the stationary X-ray source points. Image data sets from the X-rays detected by the detector elements are generated and then combined to produce the stereo image.
Abstract:
This invention provides a scanning system for scanning an object in a scanning zone. The scanning system includes both a radiation source arranged to irradiate the object with radiation having a peak energy of at least 900 keV and a scatter detector arranged to detect radiation scattered from the object wherein the radiation source is arranged to irradiate the object over a plurality of regions to be scanned within a single irradiation event. The scatter detector includes a plurality of detection elements, each detection element being arranged to detect scattered radiation from a predefined part of the scanning zone and a signal processor arranged to calculate scatter intensity across the plurality of detector elements.
Abstract:
An X-ray tube is produced by forming a first housing section 20 from sheet metal; forming a second housing section 22 from sheet metal, mounting an electron source 18 in one of the housing sections; mounting an anode 16 in one of the housing sections; and joining the housing sections 20, 22 together to form a housing defining a chamber with the electron source 18 and the anode 16 therein.
Abstract:
The present invention is an X-ray system having a source-detector module, which includes X-ray sources and detectors, for scanning an object being inspected, a scan engine coupled to the source-detector module for collecting scan data from the source detector module, an image reconstruction engine coupled to the scan engine for converting the collected scan data into one or more X-ray images, and a scan controller coupled with at least one of the source detector module, the scan engine, and the image reconstruction engine optimize operations of the X-ray system.
Abstract:
The present application discloses scanner systems that have a radiation generator arranged to generate radiation to irradiate an object, a detector arranged to detect the radiation after it has interacted with the object and generate a sequence of detector data sets as the object is moved relative to the generator, and processors arranged to process each of the detector data sets thereby to generate a control output.
Abstract:
The invention provides methods, systems and detector arrangements for scanning an object moving in a first direction that includes the steps of irradiating the object with radiation having a peak energy of at least 900 keV, providing a first detector region having a thickness of at least 2 mm and a second detector region having a thickness of at least 5 mm where the second detector region is arranged to receive radiation that has passed through the first detector region, and detecting the radiation after it has interacted with or passed through the object in order to provide information relating to the object.
Abstract:
The present invention is directed toward an X-ray scanner that has an electron source and an anode. The anode has a target surface with a series of material areas spaced along it in a scanning direction. The material areas are formed from different materials. The electron source is arranged to direct electrons at a series of target areas of the target surface, in a predetermined order, so as to generate X-ray beams having different energy spectra.