Abstract:
Technologies are generally described for reduction of the characteristic on resistance for a transistor device. In some examples, a transistor device may include a source region, a drain region, an n-type epitaxial region between the source and drain regions, a p-type body region, and a deep p-type trench region formed below the body region. The trench region may be configured to charge compensate the n-type epitaxial region. In other examples, the characteristic on resistance may be reduced by replacing the silicon below the body region with lower resistance conductive material. A backside of a wafer that includes the transistor device may be thinned by using a support or carrier on the front side of the wafer to provide mechanical support, and etching trenches in both the substrate silicon and the epitaxial silicon located below the body region of the transistor device. The trenches may be subsequently filled with conductive material.
Abstract:
Technologies are described for reduction of an output capacitance of a transistor. In some examples, spacing of source-to-drain metallization may be increased and a sealed air-gap may be employed in an elongated trench in the drain region to reduce a dielectric constant of a portion of the body region and thereby the output capacitance of the transistor. In other examples, a planar area component of a body-drain junction may be reduced by forming a spherical cavity at a bottom portion of the body-drain junction and sealing the cavity with a low dielectric constant material. In further examples, a sealed cavity may be formed in an epitaxial region below the body region through formation and removal of selective buried oxide islands. In yet other examples, the output capacitance may be reduced through removal of areas in the drain region of the transistor that do not contribute to the current flow.
Abstract:
Technologies are described for reduction of an output capacitance of a transistor. In some examples, spacing of source-to-drain metallization may be increased and a sealed air-gap may be employed in an elongated trench in the drain region to reduce a dielectric constant of a portion of the body region and thereby the output capacitance of the transistor. In other examples, a planar area component of a body-drain junction may be reduced by forming a spherical cavity at a bottom portion of the body-drain junction and sealing the cavity with a low dielectric constant material. In further examples, a sealed cavity may be formed in an epitaxial region below the body region through formation and removal of selective buried oxide islands. In yet other examples, the output capacitance may be reduced through removal of areas in the drain region of the transistor that do not contribute to the current flow.
Abstract:
Technologies are described for reduction of an output capacitance of a transistor. In some examples, spacing of source-to-drain metallization may be increased and a sealed air-gap may be employed in an elongated trench in the drain region to reduce a dielectric constant of a portion of the body region and thereby the output capacitance of the transistor. In other examples, a planar area component of a body-drain junction may be reduced by forming a spherical cavity at a bottom portion of the body-drain junction and sealing the cavity with a low dielectric constant material. In further examples, a sealed cavity may be formed in an epitaxial region below the body region through formation and removal of selective buried oxide islands. In yet other examples, the output capacitance may be reduced through removal of areas in the drain region of the transistor that do not contribute to the current flow.
Abstract:
Technologies are generally described for reduction of the characteristic on resistance for a transistor device. In some examples, a transistor device may include a source region, a drain region, an n-type epitaxial region between the source and drain regions, a p-type body region, and a deep p-type trench region formed below the body region. The trench region may be configured to charge compensate the n-type epitaxial region. In other examples, the characteristic on resistance may be reduced by replacing the silicon below the body region with lower resistance conductive material. A backside of a wafer that includes the transistor device may be thinned by using a support or carrier on the front side of the wafer to provide mechanical support, and etching trenches in both the substrate silicon and the epitaxial silicon located below the body region of the transistor device. The trenches may be subsequently filled with conductive material.