摘要:
The quantitative determination of various materials in highly scattering media such as living tissue may be determined in an external, photometric manner by the use of a plurality of light sources positioned at differing distances from a sensor. The light from said sources is amplitude modulated, and, in accordance with conventional frequency domain fluorometry or phosphorimetry techniques, the gain of the sensor is modulated at a frequency different from the frequency of the light modulation. Data may be acquired from each of the light sources at differing distances at a frequency which is the difference between the two frequencies described above. From these sets of data from each individual light source, curves may be constructed, and the slopes used to quantitatively determine the amount of certain materials present, for example glucose, oxyhemoglobin and deoxyhemoglobin in living tissue.
摘要:
The quantitative determination of various materials in highly scattering media such as living tissue may be determined in an external, photometric manner by the use of a plurality of light sources positioned at differing distances from a sensor. The light from said sources is amplitude modulated, and, in accordance with conventional frequency domain fluorometry or phosphorimetry techniques, the gain of the sensor is modulated at a frequency different from the frequency of the light modulation. Data may be acquired from each of the light sources at differing distances at a frequency which is the difference between the two frequencies described above. From these sets of data from each individual light source, curves may be constructed, and the slopes used to quantitatively determine the amount of certain materials present, for example glucose, oxyhemoglobin and deoxyhemoglobin in living tissue.
摘要:
The quantitative determination of various materials in highly scattering media such as living tissue may be determined in an external, photometric manner by the use of a plurality of light sources positioned at differing distances from a sensor. The light from said sources is amplitude modulated, and, in accordance with conventional frequency domain fluorometry or phosphorimetry techniques, the gain of the sensor is modulated at a frequency different from the frequency of the light modulation. Data may be acquired from each of the light sources at differing distances at a frequency which is the difference between the two frequencies described above. From these sets of data from each individual light source, curves may be constructed, and the slopes used to quantitatively determine the amount of certain materials present, for example oxyhemoglobin and deoxyhemoglobin in living tissue.
摘要:
The present invention involves a time-resolved measurement method for the real time, non-invasive, simultaneous measurement of time-varying and other hemoglobin compartment saturation. This capability achieves absolute pulse oximetry and oximetry for tissue, without calibration based on a population of healthy people. Calculations conducted by the invention use quantitative measurement of tissue absorption spectrum for tissue saturation, and an amplitude of absorption oscillations for the time-varying hemoglobin compartments at various wavelengths. The invention illuminates tissue and senses light at predetermined distances apart on the tissue to be measured. Intensity and phase data are acquired from source-detector pairs to calculate absolute tissue optical properties from time-resolved measurement data, namely, a reduced scattering coefficient and an absorption coefficient. To determine time-varying hemoglobin compartment saturation, an amplitude is quantitatively calculated of absorption oscillations correlating variations of an average intensity of the source and detector pair by using the time-resolved measurement data.
摘要:
A method for measuring venous oxygen saturation levels has steps of measuring optical absorption oscillation data at the respiratory frequency at a plurality of wavelengths (2). A reduced scattering coefficient and an absorption coefficient are determined for the tissue, with the result that an effective path length can be determined (6). Data processing is performed to calculate amplitudes for the absorption oscillation data that are translated into oxygenated and deoxygenated hemoglobin concentrations for the venous compartment (8). A method of the invention does not required mechanical ventilation devices or venous perturbation. Additional method steps may entail verifying that the measured absorption oscillation data results from the venous compartment.
摘要:
The relative concentration of a material such as glucose in a turbid medium such as living tissue may determining the scattering coefficient of the light that has passed through the turbid medium; and comparing the scattering coefficient with a previous scattering coefficient determined with respect to the turbid medium.
摘要:
Systems and methods are disclosed for detecting at least one region of a sample having an absorption level different from a background level of absorption in the sample by obtaining thicknesses of the sample and intensities of light transmitted through the sample at a plurality of locations. The system includes glass plates (10) for compressing the tissue, distance sensors (20, 30), illuminations fibers (40) connected to a light source (70), and collection fibers (50) connected to spectrograph (110). Spatial second derivatives are calculated from products of the thicknesses of the sample and the intensities of the transmitted light for the locations. The data points are compared to detect the region of the sample having an absorption level different from the background level of absorption within the sample. The new systems and method can be used to optically image, detect, and characterize tissue, lesions, such as cancer.
摘要:
Systems and methods are disclosed for detecting at least one region of a sample having an absorption level different from a background level of absorption in the sample by obtaining thicknesses of the sample and intensities of light transmitted through the sample at a plurality of locations. The system includes glass plates (10) for compressing the tissue, distance sensors (20, 30), illuminations fibers (40) connected to a light source (70), and collection fibers (50) connected to spectrograph (110). Spatial second derivatives are calculated from products of the thicknesses of the sample and the intensities of the transmitted light for the locations. The data points are compared to detect the region of the sample having an absorption level different from the background level of absorption within the sample. The new systems and method can be used to optically image, detect, and characterize tissue, lesions, such as cancer.
摘要:
Near-infrared spectroscopy (NIRS) is employed to examine the neuronal activity and vascular response of a peripheral nerve for research or clinical purposes. An embodiment for implementing this approach has: a nerve stimulator; a tissue spectrometer; a stimulation probe adapted to apply a stimulation from the nerve stimulator to a peripheral nerve; at least one illumination optical fiber, where each illumination optical fiber is adapted to transmit a near-infrared source light to the peripheral nerve after the stimulation is applied; and a detection optical fiber adapted to collect and deliver to the tissue spectrometer a returning light from the peripheral nerve after each source light is transmitted to the peripheral nerve. The returning light has a returning intensity, and the tissue spectrometer can determine the returning intensity to provide readings of optical diffuse reflectance of the peripheral nerve after the stimulation is applied.