DISTILLATE PRODUCTION FROM OLEFINS IN MOVING BED REACTORS

    公开(公告)号:US20210309587A1

    公开(公告)日:2021-10-07

    申请号:US16910027

    申请日:2020-06-23

    Abstract: Systems and methods are provided for oligomerization of olefins to distillate boiling range products while also recycling naphtha boiling range olefins as part of the feed. By performing the olefin oligomerization while also recycling naphtha boiling range olefins, it has been discovered that the resulting distillate boiling range products can have an unexpected improvement in diesel combustion quality, such as an unexpected improvement in cetane rating. In order to manage coke formation and maintain consistent activity profile for the oligomerization catalyst, the reaction can be performed in a moving bed reactor. Additional temperature control can be maintained by the recycling of the naphtha boiling range portions of the oligomerization product back to the reactor.

    FEED CONTROL IN CONVERSION OF BIOMASS INTO HYDROCARBON FUELS AND CHEMICALS

    公开(公告)号:US20210017548A1

    公开(公告)日:2021-01-21

    申请号:US16870914

    申请日:2020-05-09

    Abstract: The present disclosure relates to processes for producing hydrocarbon fuels from lignocellulosic biomass. A process may include introducing biomass to a pretreatment system, and a first separation system forming a pentose-rich stream and a pentose-lean stream. The pentose-lean stream may be introduced to a hydrolysis system forming a hydrolysate and the hydrolysate introduced to a second separation system forming a hexose-rich stream and a lignin stream. Additionally, at least one of the pentose-rich stream or the hexose-rich stream may be introduced to a bioreactor containing microorganisms configured to produce hydrocarbon fuels. Additionally, the present disclosure also relates to systems for the production of hydrocarbon fuels. A system may include a pretreatment system, a first separation system, a hydrolysis system, a second separation system, and one or more bioreactors. Alternatively a system may include a pretreatment system, a hydrolysis system, a sugar separation system, and one or more bioreactors.

    INTEGRATION OF SIDE RISER FOR AROMATIZATION OF LIGHT PARAFFINS

    公开(公告)号:US20200248079A1

    公开(公告)日:2020-08-06

    申请号:US16263026

    申请日:2019-01-31

    Abstract: Systems and methods are provided for conversion of light paraffinic gases to form liquid products in a two-stage reaction system. In a first stage, the light paraffinic gas is exposed to heat transfer particles in a side riser, where the heat transfer particles correspond to particles used in a separate process. Examples of a separate process include fluidized coking and fluid catalytic cracking. The conditions in the side riser can be selected to allow for conversion of at least a portion of the paraffins to olefins. After conversion, the converted olefin stream is passed to the second reaction stage while the heat transfer particles are returned to the separate process. The converted olefin stream is then exposed to a conversion catalyst under conditions for forming aromatics from the converted olefin stream in a second reaction stage. By performing the initial alkane conversion to olefins in the first reaction stage, the amount of coke formed during the aromatics formation process is reduced or minimized.

    Catalyst roller for gravity-assisted particle flow

    公开(公告)号:US10188998B2

    公开(公告)日:2019-01-29

    申请号:US15924734

    申请日:2018-03-19

    Abstract: Systems and methods are provided for controlling the flow and transport of catalyst particles within a reaction system. The flow of catalyst particles can be managed using a rotating disc or wheel that is configured within a roller volume to allow for control over the rate of catalyst flow while reducing or minimizing attrition of the catalyst particles. This can be achieved in part by maintaining a relationship between the center of the rotating disc, the inlet for catalyst particles to the roller volume, and the top wall of the roller volume so that catalyst particles are not exposed to compressive forces and/or abrasion during rotation of the disc. Additionally or alternately, the disc and roller volume surfaces can be configured to reduce or minimize the potential for catalyst particles to become trapped in “dead space” regions within the roller volume. By using a disc to provide force for transport of particles through the roller volume, the speed of catalyst movement can be controlled at relatively slow catalyst flow rates with a reduced or minimized risk for clogging or plugging within the roller volume.

    Distillate production from olefins in moving bed reactors

    公开(公告)号:US11299443B2

    公开(公告)日:2022-04-12

    申请号:US16910027

    申请日:2020-06-23

    Abstract: Systems and methods are provided for oligomerization of olefins to distillate boiling range products while also recycling naphtha boiling range olefins as part of the feed. By performing the olefin oligomerization while also recycling naphtha boiling range olefins, it has been discovered that the resulting distillate boiling range products can have an unexpected improvement in diesel combustion quality, such as an unexpected improvement in cetane rating. In order to manage coke formation and maintain consistent activity profile for the oligomerization catalyst, the reaction can be performed in a moving bed reactor. Additional temperature control can be maintained by the recycling of the naphtha boiling range portions of the oligomerization product back to the reactor.

    Fixed bed radial flow reactor for light paraffin conversion

    公开(公告)号:US10913042B2

    公开(公告)日:2021-02-09

    申请号:US16214846

    申请日:2018-12-10

    Abstract: Systems and methods are provided for conversion of light paraffinic gases to form liquid products in a process performed in a fixed bed radial-flow reactor. The light paraffins can correspond to C3+ paraffins. Examples of liquid products that can be formed include C6-C12 aromatics, such as benzene, toluene, and xylene. The fixed bed radial-flow reactor can allow for improved control over the reaction conditions for paraffin conversion in spite of the fixed bed nature of the reactor. This can allow the process to operate with improved efficiency while reducing or minimizing the complexity of operation relative to non-fixed bed reactor systems.

Patent Agency Ranking